domingo, 31 de marzo de 2013


Controversial Worm Keeps Its Position as Progenitor of Humankind

Mar. 27, 2013 — Researchers are arguing about whether or not the Xenoturbella bocki worm is the progenitor of humankind. But new studies indicate that this is actually the case.






Swedish researchers from the University of Gothenburg and the Gothenburg Natural History Museum are involved in the international study. The results have been published in Nature Communications.
The Xenoturbella bocki worm is a one-centimetre long worm with a simple body plan that is only found regularly by the west coast of Sweden. The worm lacks a brain, sexual organs and other vital organs.
Zoologists have long disagreed about whether or not the Xenoturbella bocki worm holds a key position in the animal tree of life. If it does have a key position, it is very important for the understanding of the evolutionary development of organs and cell functions, such as stem cells, for example. The question is therefore not only important in the field of biology, but also for potential biomedical applications.
"It's absolutely fantastic that one of the key evolutionary organisms in the animal kingdom lives right on the doorstep of the University of Gothenburg's Centre for Marine Research. And this is actually the only place in the whole world where you can do research on the creature," says Matthias Obst from the Department of Biological and Environmental Sciences at the University of Gothenburg.
Genetic studies indicate that theXenoturbella bocki worm belongs to the group of deuterostomes, the exclusive group to which human's belongs.
"So maybe we're more closely related to the Xenoturbella bocki worm, which doesn't have a brain, than we are to lobsters and flies, for example," says Matthias Obst.
Even though the worm does not particularly resemble man, development biologists have referred to the fact that the early embryonic development of the worm may display similarities with the group to which man belongs. But the problem has been that no one has previously been able to see the development of the creature.
But now a group of researchers at the Sven Lovén Centre for Marine Sciences and the Gothenburg Natural History Museum have succeeded in doing what no one else has done before: to isolate newly born little Xenoturbella bocki worms.
"And these new-born worms revealed absolutely no remnants at all of advanced features! Instead, they exhibit similarities with quite simple, ancient animals such as corals and sponges," says Matthias Obst.
The studies also reveal the value of the University of Gothenburg's marine stations for important basic research.
"The Lovén Centre at the University of Gothenburg is the only place in the whole world where you can study this paradoxical animal (in Swedish called 'Paradox worm'). That's one reason why researchers come from all over the world to Gullmarsfjorden to solve one of the great mysteries in the evolution of animal life," says Matthias Obst.

Source: Science Daily 

Biological Transistor Enables Computing Within Living Cells

Mar. 28, 2013 — When Charles Babbage prototyped the first computing machine in the 19th century, he imagined using mechanical gears and latches to control information. ENIAC, the first modern computer developed in the 1940s, used vacuum tubes and electricity. Today, computers use transistors made from highly engineered semiconducting materials to carry out their logical operations.
And now a team of Stanford University bioengineers has taken computing beyond mechanics and electronics into the living realm of biology. In a paper to be published March 28 in Science, the team details a biological transistor made from genetic material -- DNA and RNA -- in place of gears or electrons. The team calls its biological transistor the "transcriptor."
"Transcriptors are the key component behind amplifying genetic logic -- akin to the transistor and electronics," said Jerome Bonnet, PhD, a postdoctoral scholar in bioengineering and the paper's lead author.
The creation of the transcriptor allows engineers to compute inside living cells to record, for instance, when cells have been exposed to certain external stimuli or environmental factors, or even to turn on and off cell reproduction as needed.
"Biological computers can be used to study and reprogram living systems, monitor environments and improve cellular therapeutics," said Drew Endy, PhD, assistant professor of bioengineering and the paper's senior author.
The biological computer
In electronics, a transistor controls the flow of electrons along a circuit. Similarly, in biologics, a transcriptor controls the flow of a specific protein, RNA polymerase, as it travels along a strand of DNA.
"We have repurposed a group of natural proteins, called integrases, to realize digital control over the flow of RNA polymerase along DNA, which in turn allowed us to engineer amplifying genetic logic," said Endy.
Using transcriptors, the team has created what are known in electrical engineering as logic gates that can derive true-false answers to virtually any biochemical question that might be posed within a cell.
They refer to their transcriptor-based logic gates as "Boolean Integrase Logic," or "BIL gates" for short.
Transcriptor-based gates alone do not constitute a computer, but they are the third and final component of a biological computer that could operate within individual living cells.
Despite their outward differences, all modern computers, from ENIAC to Apple, share three basic functions: storing, transmitting and performing logical operations on information.
Last year, Endy and his team made news in delivering the other two core components of a fully functional genetic computer. The first was a type of rewritable digital data storage within DNA. They also developed a mechanism for transmitting genetic information from cell to cell, a sort of biological Internet.
It all adds up to creating a computer inside a living cell.
Boole's gold
Digital logic is often referred to as "Boolean logic," after George Boole, the mathematician who proposed the system in 1854. Today, Boolean logic typically takes the form of 1s and 0s within a computer. Answer true, gate open; answer false, gate closed. Open. Closed. On. Off. 1. 0. It's that basic. But it turns out that with just these simple tools and ways of thinking you can accomplish quite a lot.
"AND" and "OR" are just two of the most basic Boolean logic gates. An "AND" gate, for instance, is "true" when both of its inputs are true -- when "a" and "b" are true. An "OR" gate, on the other hand, is true when either or both of its inputs are true.
In a biological setting, the possibilities for logic are as limitless as in electronics, Bonnet explained. "You could test whether a given cell had been exposed to any number of external stimuli -- the presence of glucose and caffeine, for instance. BIL gates would allow you to make that determination and to store that information so you could easily identify those which had been exposed and which had not," he said.
By the same token, you could tell the cell to start or stop reproducing if certain factors were present. And, by coupling BIL gates with the team's biological Internet, it is possible to communicate genetic information from cell to cell to orchestrate the behavior of a group of cells.
"The potential applications are limited only by the imagination of the researcher," said co-author Monica Ortiz, a PhD candidate in bioengineering who demonstrated autonomous cell-to-cell communication of DNA encoding various BIL gates.
Building a transcriptor
To create transcriptors and logic gates, the team used carefully calibrated combinations of enzymes -- the integrases mentioned earlier -- that control the flow of RNA polymerase along strands of DNA. If this were electronics, DNA is the wire and RNA polymerase is the electron.
"The choice of enzymes is important," Bonnet said. "We have been careful to select enzymes that function in bacteria, fungi, plants and animals, so that bio-computers can be engineered within a variety of organisms."
On the technical side, the transcriptor achieves a key similarity between the biological transistor and its semiconducting cousin: signal amplification.
With transcriptors, a very small change in the expression of an integrase can create a very large change in the expression of any two other genes.
To understand the importance of amplification, consider that the transistor was first conceived as a way to replace expensive, inefficient and unreliable vacuum tubes in the amplification of telephone signals for transcontinental phone calls. Electrical signals traveling along wires get weaker the farther they travel, but if you put an amplifier every so often along the way, you can relay the signal across a great distance. The same would hold in biological systems as signals get transmitted among a group of cells.
"It is a concept similar to transistor radios," said Pakpoom Subsoontorn, a PhD candidate in bioengineering and co-author of the study who developed theoretical models to predict the behavior of BIL gates. "Relatively weak radio waves traveling through the air can get amplified into sound."
Public-domain biotechnology
To bring the age of the biological computer to a much speedier reality, Endy and his team have contributed all of BIL gates to the public domain so that others can immediately harness and improve upon the tools.
"Most of biotechnology has not yet been imagined, let alone made true. By freely sharing important basic tools everyone can work better together," Bonnet said.
Share this story on FacebookTwitter, and Google:

Source: SCIENCE DAILY

viernes, 29 de marzo de 2013


Closest Brown Dwarf System Discovered

Two newly discovered brown dwarfs lie just 6.5 light-years away, making them the closest brown dwarfs known, the third-closest star system known, and best of all, a promising target for exoplanet studies.

Closest Brown Dwarfs
NASA / JPL / Gemini Observatory / AURA / NSF
A newly discovered pair of brown dwarfs 6.5 light-years away is breaking records. The brown dwarfs are the closest known, and together they make up the closest star system discovered since 1916. Moreover, WISE J104915.57-531906 (or WISE J1049 for short) displaces Wolf 359 as the third-closest star system to Earth after Alpha Centauri (4.4 light-years away) and Barnard’s star (6 light-years away). Kevin Luhman (Pennsylvania State University) announced the discovery in a letter to be published in April 10th’s Astrophysical Journal.

Technically, the system doesn’t contain stars at all — brown dwarfs are often referred to as “failed stars” because they contain too little mass to sustain the hydrogen fusion by which stars shine. While many undergo some fusion early on, all of them shine by radiating away their internal heat at infrared wavelengths instead of visible light. 

The now-hibernating Wide-field Infrared Survey Explorer (WISE)surveyed almost the entire infrared sky from 2009 to 2011, uncovering more than 100 brown dwarfs. A previous WISE study found that hydrogen-fusing stars outnumber brown dwarfs by about 6:1, even in the solar neighborhood, where brown dwarfs were once thought to equal stars in number.

"Now that we're finally seeing the solar neighborhood with keener, infrared vision, the little guys aren't as prevalent as we once thought," comments Davy Kirkpatrick (Caltech). 

Most previous surveys found brown dwarfs by their infrared colors, but Luhman took a different approach. He searched for infrared sources in WISE data with high proper motion — the sources appear to speed across the night sky. By measuring an object’s displacement relative to more distant, background stars, Luhman could determine its distance viaparallax. This technique, based on simple geometry, allows you to calculate the distance to a finger held steady in front of your face by watching it move back and forth as you close first one eye and then the other. 

In Luhman’s case, the baseline was the width of Earth’s orbit rather than the distance between his eyes. He caught a dim but rapidly moving object in the WISE surveys and calculated where he might find it in older images taken between 1978 and 1999 as part of past infrared surveys. The combined detections give a parallax of 0.5 arcseconds, or a distance of 6.5±0.5 light-years, putting the object just past Barnard’s Star. 

Closest Brown Dwarfs
Our neighborhood just got a little more crowded. The two brown dwarfs that make up WISE J1049 lie 3 a.u. apart, and 6.5 light-years away. The pair is the closest brown dwarf system known, and the third-closest star system.
NASA / JPL / Gemini Observatory / AURA / NSF
Follow-up data from the Gemini South Telescope in Chile resolved the blurry infrared source into two objects, both brown dwarfs hovering near the transition between L-type and T-type. Separated by three times the Earth-Sun distance, one brown dwarf is about 1.5 times brighter than the other. 

“This pair of brown dwarfs is so bright because of its close proximity to us that when I first started examining it, I thought that it was surely too bright to be a brown dwarf,” Luhman says. The pair has gone undetected until now because previous surveys tend to avoid the star-dense plane of the Milky Way.

"It's likely that proper motion surveys will continue to uncover a few more brown dwarfs in the galactic plane," Luhman adds, "as well as objects with unusual colors that would be rejected in a color-based search."

Brown Dwarfs as Exoplanets

Illustration of closest brown dwarf system
This artist's conception shows the binary brown dwarf system, with the Sun in the background. (The brown dwarfs are actually separated by 3 a.u., so they would probably appear much smaller in each other's skies than shown in the illustration.)
Janella Williams (PSU)
Brown dwarfs are so like the gas giants they outweigh, they have piqued astronomers’ interest as possible exoplanet analogues. And its close proximity makes this brown dwarf pair a particularly tantalizing prospect. 

“Giant planets around other stars are very difficult to study directly because the glare from their star gets in the way,” Luhman explains, “but brown dwarfs are often found free-floating by themselves in space, without any glare from a star, making them attractive substitutes for giant planets when studying cool atmospheres.” 

A planet orbiting the brown dwarf would be easier to image directly, too, though such planets would likely not host life. Binary systems have a harder time making planets in stable orbits, but the possibility of planets orbiting either one or both brown dwarfs is far from impossible.

“A planet could orbit either brown dwarf in a tight orbit, so close that the other brown dwarf doesn't gravitationally perturb the planet's orbital path. Alternatively, a planet could orbit far from both brown dwarfs, so far from them that the pair acts almost as one star,” says Geoffrey Marcy (University of California, Berkeley).

The search for brown dwarfs is far from over — the project AllWISE will combine data from WISE’s all-sky surveys to search systematically for nearby fast-moving objects, such as WISE J1049, as well as faint objects from the distant universe. AllWISE data will be available to the public in late 2013.


Shari Balouchi is a sophomore pursuing a Physics/Astronomy minor at Sewanee: The University of the South and writes an astronomy column for The Sewanee Purple a student-run newspaper on campus.

Posted By Sharazade Balouchi, March 26, 2013

Source: Sky and Telescope

jueves, 28 de marzo de 2013


How the Higgs Boson Might Spell Doom for the Universe

Under the simplest assumptions, the measured mass of the Higgs could mean the universe is unstable and destined to fall apart. But don’t worry—it won’t happen for billions of eons








 

10
Share





Physicists recently confirmed that the Large Hadron Collider (LHC) at CERN, the particle physics laboratory in Geneva, had indeed found a Higgs boson last July, marking a culmination of one of the longest and most expensive searches in science. 
The finding also means that our universe could be doomed to fall apart. "If you use all the physics that we know now and you do what you think is a straightforward calculation, it is bad news," says Joseph Lykken, a theorist who works at the Fermilab National Accelerator Laboratory in Illinois. "It may be that the universe we live in is inherently unstable."

Higgs Boson

A reconstructed particle collision in the CMS detector of the LHC.Image: CMS/CERN
The Higgs boson helps explain why particles have the mass they do. The Higgs particle that the LHC has found possesses a mass of approximately 126 giga-electron volts (GeV)—roughly the combined mass of 126 protons (hydrogen nuclei). (One GeV equals a billion electron volts.)
Based on the data analysis so far, the discovered particle is consistent with the Standard Model of particle physics, the highly successful theory that describes the subatomic world, although other models cannot be ruled out. "It is looking very much like the Standard Model Higgs boson—although there may be a very massive Higgs particle that also exists, and which our experiment is not sensitive enough to detect," says Joseph Incandela, the spokesman for the CMS (Compact Muon Solenoid) experiment at the LHC, one of the two experiments that detected the current Higgs particle,
And that very nature of being a Standard Model Higgs may be the reason our universe is ultimately unstable. It has to do with the so-called vacuum stability in the Standard Model.
According to the description currently favored by physicists, a vacuum is not completely devoid of matter but instead teems with particles and antiparticles that pop into existence and then run into one another and annihilate themselves, all in very short times. The inherent uncertainty embodied in quantum mechanics permits these spontaneous fluctuations—as long as the particles don't live for more than a fleeting instant, the process violates no laws of physics.
The Standard Model also says, as Lykken puts it, that "for the vacuum of empty space to be stable, we should be living at a minimum of potential energy." In other words, most things end up resting in a place of lowest energy. A ball rolls downhill and settles in a low point; getting it to move away from this point requires a kick of energy. In the case of the universe it would be like living at the bottom of a valley bordered by hills: the value of the Higgs potential would be lowest point of the valley.
Our universe might end if our valley really isn't the lowest one around. Physicist Benjamin Allanach of the University of Cambridge explains: "The shape of the Higgs potential is determined precisely by the Higgs mass." The observed 126 GeV mass seems to imply the universe does not exist in the lowest possible energy state but is in fact positioned in a slightly unusual place. "It turns out that for a Higgs boson of 126 GeV, we might be in the gray area where the universe is at a local minimum that is not the global minimum," says physicist Matthew Strassler of Rutgers University.
It is sort of like being in a valley whose floor is higher than that of an adjoining valley. If you didn't know that a deep valley was on the other side of the hill, you would think you were at the lowest level you could be. If you somehow managed to get to the other side, however, you could fall much lower.
This situation would normally not pose a problem, as you couldn't travel between valleys—except in quantum mechanics, which allows particles to tunnel through hills unpredictably. As a result, "in the future our universe could spontaneously and randomly tunnel through to the deeper one, with potentially catastrophic consequences," Allanach says.








 

10
Share




Such a metastable universe is not a new idea. As far back as 1979, physicists were trying to calculate the implications of the mass of the Higgs boson on cosmology. In 2001 theoretical physicists Paul Steinhardt of Princeton University and Neil Turok of the Perimeter Institute for Theoretical Physics in Canada described a cyclic universe, which alternates between expansion and contraction, and is consistent with the sort of metastability implied by the observed mass of the Higgs boson. More recently, Giuseppe Degrassi of the University of Rome and Jose Espinosa of the Autonomous University of Barcelona and their collaborators have calculated the broad implications of the Higgs mass.
"We now know with a large degree of confidence that our vacuum is on the unstable side and we were able to calculate its decay lifetime," Espinosa says. "This lifetime turns out to be way larger than the [present] age of the universe."
Most theorists don't seem to be too worried about the destruction of our universe, because metastability would not manifest itself anytime soon—if ever. Also, they expect that the LHC will find other particles in due course. Then, new calculations could indicate that the universe has more stability. Specifically, the fate of the universe depends quite sensitively not only on the Higgs but also on the mass of the top quark, another fundamental particle whose mass hovers at about 180 GeV. "The top quark strongly affects the vacuum by its quantum fluctuations because it is so heavy," Allanach says. "If the Higgs mass were really 127 GeV and the top mass were a little lower than its most likely value, then actually the universe would be completely stable and the vacuum would be in the true minimum."
Steinhardt says, "There is a tiny sliver of metastability. Why is the universe just at this point? Is this actually a profound thing we have to understand?"
But assuming that everything is known about the Standard Model and no new particles and forces will be found in the future, then the universe might be in the gray region where it is long-lived but somewhat unstable and therefore might disappear a few billions of eons from now.  "And maybe not even billions of years, but billions of eons or billions of billions" of eons, Strassler stresses. "This is not something that keeps me awake."

Source: Scientific American




New View of Primordial Universe Confirms Sudden "Inflation" after Big Bang


The Planck space telescope's picture of the cosmic microwave background sheds fresh light on the first instants following the birth of the universe, and suggests that it's about 80 million years older than previously thought








 

11
Share





The Planck space telescope has delivered the most detailed picture yet of the cosmic microwave background, the residual glow of the Big Bang.
Scientists unveiling the results from the €600 million European Space Agency (ESA) probe said that they shed fresh light on the first instants of our Universe’s birth. They also peg the age of the Universe at 13.81 billion years — slightly older than previously estimated.

cosmic microwave background
The cosmic microwave background sky as seen by the Planck observatory.Image: ESA and the Planck Collaboration

“For cosmologists, this map is a goldmine of information,” says George Efstathiou, director of the Kavli Institute for Cosmology at the University of Cambridge, UK, one of Planck’s lead researchers.
 
Planck’s results strongly support the idea that in the 10-32 seconds or so after the Big Bang, the Universe expanded at a staggering rate — a process dubbed inflation.
Inflation would explain why the Universe is so big, and why we cannot detect any curvature in the fabric of space (other than the tiny indentations caused by massive objects like black holes). The sudden ballooning of the primordial Universe also amplified quantum fluctuations into clumps of matter that later seeded the first stars, and eventually the straggly superclusters of galaxies that span hundreds of millions of light years.
The cosmic microwave background (CMB) radiation studied by Planck dates from about 380,000 years after the Big Bang, when the Universe had cooled to a few thousand degrees and neutral atoms of hydrogen and helium began to form from the seething mass of charged plasma. That allowed photons to travel unimpeded through space, in a pattern that carried the echoes of inflation. Those photons are still out there today, as a dim glow of microwaves with a temperature of just 2.7 K.
Since the CMB was first detected in 1965, the Cosmic Background Explorer (COBE) and the Wilkinson Microwave Anisotropy Probe (WMAP) have mapped the tiny temperature variations in the CMB with ever more precision. This has enabled cosmologists to work out when the Big Bang happened, estimate the amount of unseendark matter in the cosmos, and measure the ‘dark energy’ that is accelerating the expansion of the Universe.
Planck, launched in 2009, is more than three times more sensitive than its predecessor WMAP. Its high-frequency microwave detector is cooled to just 0.1 degrees above absolute zero. That enables it to detect variations in the temperature of the CMB as small as a millionth of a degree.
These precision measurements show that the Universe is expanding slightly slower than estimated by WMAP. That rate, known as the Hubble constant, is 67.3 kilometers per second per megaparsec, which suggests that the Universe is about 80 million years older than WMAP had calculated.
It also means that dark energy makes up 68.3% of the energy density of the Universe, a slightly smaller proportion than WMAP had estimated. The contribution of dark matter swells from 22.7% to 26.8%, leaving normal matter making up less than 5%.
Planck also confirmed some oddities earlier noted by WMAP. The simplest models of inflation predict that fluctuations in the CMB should look the same all over the sky. But WMAP has found, and Planck confirmed, an asymmetry between opposite hemispheres of the sky, as well as a ‘cold spot’ that covers a large area. The asymmetry “defines a preferred direction in space, which is an extremely strange result,” says Efstathiou. This rules out some models of inflation, but does not undermine the idea itself, he adds. It does, however, raise tantalizing hints that there may yet be new physics to be discovered in Planck’s data.
The Planck space telescope's picture of the cosmic microwave background sheds fresh light on the first instants following the birth of the universe, and suggests that it's about 80 million years older than previously thought








 

11
Share




So far, the team have analyzed about 15.5 months of data, and “we have about as much again to look at”, says Efstathiou. The team expects to release their next tranche of data in early 2014.
This article is reproduced with permission from the magazine Nature. The article was first published on March 21, 2013.

Source:  Donaire, Bitnavegantes