viernes, 20 de enero de 2017

A New Physics Theory of Life

Jeremy England
Katherine Taylor for Quanta Magazine
Jeremy England, a 31-year-old physicist at MIT, thinks he has found the underlying physics driving the origin and evolution of life.
 
Why does life exist?
Popular hypotheses credit a primordial soup, a bolt of lightning and a colossal stroke of luck. But if a provocative new theory is correct, luck may have little to do with it. Instead, according to the physicist proposing the idea, the origin and subsequent evolution of life follow from the fundamental laws of nature and “should be as unsurprising as rocks rolling downhill.”
From the standpoint of physics, there is one essential difference between living things and inanimate clumps of carbon atoms: The former tend to be much better at capturing energy from their environment and dissipating that energy as heat. Jeremy England, a 31-year-old assistant professor at the Massachusetts Institute of Technology, has derived a mathematical formula that he believes explains this capacity. The formula, based on established physics, indicates that when a group of atoms is driven by an external source of energy (like the sun or chemical fuel) and surrounded by a heat bath (like the ocean or atmosphere), it will often gradually restructure itself in order to dissipate increasingly more energy. This could mean that under certain conditions, matter inexorably acquires the key physical attribute associated with life.
Kristian Peters
Cells from the moss Plagiomnium affine with visible chloroplasts, organelles that conduct photosynthesis by capturing sunlight.
“You start with a random clump of atoms, and if you shine light on it for long enough, it should not be so surprising that you get a plant,” England said.
England’s theory is meant to underlie, rather than replace, Darwin’s theory of evolution by natural selection, which provides a powerful description of life at the level of genes and populations. “I am certainly not saying that Darwinian ideas are wrong,” he explained. “On the contrary, I am just saying that from the perspective of the physics, you might call Darwinian evolution a special case of a more general phenomenon.”
His idea, detailed in a recent paper and further elaborated in a talk he is delivering at universities around the world, has sparked controversy among his colleagues, who see it as either tenuous or a potential breakthrough, or both.
England has taken “a very brave and very important step,” said Alexander Grosberg, a professor of physics at New York University who has followed England’s work since its early stages. The “big hope” is that he has identified the underlying physical principle driving the origin and evolution of life, Grosberg said.
“Jeremy is just about the brightest young scientist I ever came across,” said Attila Szabo, a biophysicist in the Laboratory of Chemical Physics at the National Institutes of Health who corresponded with England about his theory after meeting him at a conference. “I was struck by the originality of the ideas.”
Others, such as Eugene Shakhnovich, a professor of chemistry, chemical biology and biophysics at Harvard University, are not convinced. “Jeremy’s ideas are interesting and potentially promising, but at this point are extremely speculative, especially as applied to life phenomena,” Shakhnovich said.
England’s theoretical results are generally considered valid. It is his interpretation — that his formula represents the driving force behind a class of phenomena in nature that includes life — that remains unproven. But already, there are ideas about how to test that interpretation in the lab.
“He’s trying something radically different,” said Mara Prentiss, a professor of physics at Harvard who is contemplating such an experiment after learning about England’s work. “As an organizing lens, I think he has a fabulous idea. Right or wrong, it’s going to be very much worth the investigation.”
Courtesy of Jeremy England
A computer simulation by Jeremy England and colleagues shows a system of particles confined inside a viscous fluid in which the turquoise particles are driven by an oscillating force. Over time (from top to bottom), the force triggers the formation of more bonds among the particles.
At the heart of England’s idea is the second law of thermodynamics, also known as the law of increasing entropy or the “arrow of time.” Hot things cool down, gas diffuses through air, eggs scramble but never spontaneously unscramble; in short, energy tends to disperse or spread out as time progresses. Entropy is a measure of this tendency, quantifying how dispersed the energy is among the particles in a system, and how diffuse those particles are throughout space. It increases as a simple matter of probability: There are more ways for energy to be spread out than for it to be concentrated. Thus, as particles in a system move around and interact, they will, through sheer chance, tend to adopt configurations in which the energy is spread out. Eventually, the system arrives at a state of maximum entropy called “thermodynamic equilibrium,” in which energy is uniformly distributed. A cup of coffee and the room it sits in become the same temperature, for example. As long as the cup and the room are left alone, this process is irreversible. The coffee never spontaneously heats up again because the odds are overwhelmingly stacked against so much of the room’s energy randomly concentrating in its atoms.
Although entropy must increase over time in an isolated or “closed” system, an “open” system can keep its entropy low — that is, divide energy unevenly among its atoms — by greatly increasing the entropy of its surroundings. In his influential 1944 monograph “What Is Life?” the eminent quantum physicist Erwin Schrödinger argued that this is what living things must do. A plant, for example, absorbs extremely energetic sunlight, uses it to build sugars, and ejects infrared light, a much less concentrated form of energy. The overall entropy of the universe increases during photosynthesis as the sunlight dissipates, even as the plant prevents itself from decaying by maintaining an orderly internal structure.
Life does not violate the second law of thermodynamics, but until recently, physicists were unable to use thermodynamics to explain why it should arise in the first place. In Schrödinger’s day, they could solve the equations of thermodynamics only for closed systems in equilibrium. In the 1960s, the Belgian physicist Ilya Prigogine made progress on predicting the behavior of open systems weakly driven by external energy sources (for which he won the 1977 Nobel Prize in chemistry). But the behavior of systems that are far from equilibrium, which are connected to the outside environment and strongly driven by external sources of energy, could not be predicted.
David Kaplan, Tom Hurwitz, Richard Fleming, and Tom McNamara for Quanta Magazine; music by Podington Bear.
Video: David Kaplan explains how the law of increasing entropy could drive random bits of matter into the stable, orderly structures of life.
This situation changed in the late 1990s, due primarily to the work of Chris Jarzynski, now at the University of Maryland, and Gavin Crooks, now at Lawrence Berkeley National Laboratory. Jarzynski and Crooks showed that the entropy produced by a thermodynamic process, such as the cooling of a cup of coffee, corresponds to a simple ratio: the probability that the atoms will undergo that process divided by their probability of undergoing the reverse process (that is, spontaneously interacting in such a way that the coffee warms up). As entropy production increases, so does this ratio: A system’s behavior becomes more and more “irreversible.” The simple yet rigorous formula could in principle be applied to any thermodynamic process, no matter how fast or far from equilibrium. “Our understanding of far-from-equilibrium statistical mechanics greatly improved,” Grosberg said. England, who is trained in both biochemistry and physics, started his own lab at MIT two years ago and decided to apply the new knowledge of statistical physics to biology.
Using Jarzynski and Crooks’ formulation, he derived a generalization of the second law of thermodynamics that holds for systems of particles with certain characteristics: The systems are strongly driven by an external energy source such as an electromagnetic wave, and they can dump heat into a surrounding bath. This class of systems includes all living things. England then determined how such systems tend to evolve over time as they increase their irreversibility. “We can show very simply from the formula that the more likely evolutionary outcomes are going to be the ones that absorbed and dissipated more energy from the environment’s external drives on the way to getting there,” he said. The finding makes intuitive sense: Particles tend to dissipate more energy when they resonate with a driving force, or move in the direction it is pushing them, and they are more likely to move in that direction than any other at any given moment.
“This means clumps of atoms surrounded by a bath at some temperature, like the atmosphere or the ocean, should tend over time to arrange themselves to resonate better and better with the sources of mechanical, electromagnetic or chemical work in their environments,” England explained.
Courtesy of Michael Brenner/Proceedings of the National Academy of Sciences
Self-Replicating Sphere Clusters: According to new research at Harvard, coating the surfaces of microspheres can cause them to spontaneously assemble into a chosen structure, such as a polytetrahedron (red), which then triggers nearby spheres into forming an identical structure.
Self-replication (or reproduction, in biological terms), the process that drives the evolution of life on Earth, is one such mechanism by which a system might dissipate an increasing amount of energy over time. As England put it, “A great way of dissipating more is to make more copies of yourself.” In a September paper in the Journal of Chemical Physics, he reported the theoretical minimum amount of dissipation that can occur during the self-replication of RNA molecules and bacterial cells, and showed that it is very close to the actual amounts these systems dissipate when replicating. He also showed that RNA, the nucleic acid that many scientists believe served as the precursor to DNA-based life, is a particularly cheap building material. Once RNA arose, he argues, its “Darwinian takeover” was perhaps not surprising.
The chemistry of the primordial soup, random mutations, geography, catastrophic events and countless other factors have contributed to the fine details of Earth’s diverse flora and fauna. But according to England’s theory, the underlying principle driving the whole process is dissipation-driven adaptation of matter.
This principle would apply to inanimate matter as well. “It is very tempting to speculate about what phenomena in nature we can now fit under this big tent of dissipation-driven adaptive organization,” England said. “Many examples could just be right under our nose, but because we haven’t been looking for them we haven’t noticed them.”
Scientists have already observed self-replication in nonliving systems. According to new research led by Philip Marcus of the University of California, Berkeley, and reported in Physical Review Letters in August, vortices in turbulent fluids spontaneously replicate themselves by drawing energy from shear in the surrounding fluid. And in a paper appearing online this week in Proceedings of the National Academy of Sciences, Michael Brenner, a professor of applied mathematics and physics at Harvard, and his collaborators present theoretical models and simulations of microstructures that self-replicate. These clusters of specially coated microspheres dissipate energy by roping nearby spheres into forming identical clusters. “This connects very much to what Jeremy is saying,” Brenner said.
Besides self-replication, greater structural organization is another means by which strongly driven systems ramp up their ability to dissipate energy. A plant, for example, is much better at capturing and routing solar energy through itself than an unstructured heap of carbon atoms. Thus, England argues that under certain conditions, matter will spontaneously self-organize. This tendency could account for the internal order of living things and of many inanimate structures as well. “Snowflakes, sand dunes and turbulent vortices all have in common that they are strikingly patterned structures that emerge in many-particle systems driven by some dissipative process,” he said. Condensation, wind and viscous drag are the relevant processes in these particular cases.
“He is making me think that the distinction between living and nonliving matter is not sharp,” said Carl Franck, a biological physicist at Cornell University, in an email. “I’m particularly impressed by this notion when one considers systems as small as chemical circuits involving a few biomolecules.”
Wilson Bentley
If a new theory is correct, the same physics it identifies as responsible for the origin of living things could explain the formation of many other patterned structures in nature. Snowflakes, sand dunes and self-replicating vortices in the protoplanetary disk may all be examples of dissipation-driven adaptation.
England’s bold idea will likely face close scrutiny in the coming years. He is currently running computer simulations to test his theory that systems of particles adapt their structures to become better at dissipating energy. The next step will be to run experiments on living systems.
Prentiss, who runs an experimental biophysics lab at Harvard, says England’s theory could be tested by comparing cells with different mutations and looking for a correlation between the amount of energy the cells dissipate and their replication rates. “One has to be careful because any mutation might do many things,” she said. “But if one kept doing many of these experiments on different systems and if [dissipation and replication success] are indeed correlated, that would suggest this is the correct organizing principle.”
Brenner said he hopes to connect England’s theory to his own microsphere constructions and determine whether the theory correctly predicts which self-replication and self-assembly processes can occur — “a fundamental question in science,” he said.
Having an overarching principle of life and evolution would give researchers a broader perspective on the emergence of structure and function in living things, many of the researchers said. “Natural selection doesn’t explain certain characteristics,” said Ard Louis, a biophysicist at Oxford University, in an email. These characteristics include a heritable change to gene expression called methylation, increases in complexity in the absence of natural selection, and certain molecular changes Louis has recently studied.
If England’s approach stands up to more testing, it could further liberate biologists from seeking a Darwinian explanation for every adaptation and allow them to think more generally in terms of dissipation-driven organization. They might find, for example, that “the reason that an organism shows characteristic X rather than Y may not be because X is more fit than Y, but because physical constraints make it easier for X to evolve than for Y to evolve,” Louis said.
“People often get stuck in thinking about individual problems,” Prentiss said.  Whether or not England’s ideas turn out to be exactly right, she said, “thinking more broadly is where many scientific breakthroughs are made.”
Emily Singer contributed reporting. This article was reprinted on ScientificAmerican.com and BusinessInsider.com.
Correction: This article was revised on January 22, 2014, to reflect that Ilya Prigogine won the Nobel Prize in chemistry, not physics.

Source: https://www.quantamagazine.org/20140122-a-new-physics-theory-of-life/?utm_source=Quanta+Magazine&utm_campaign=331a2e37f3-Quanta_Newsletter_Feb_27_2015&utm_medium=email&utm_term=0_f0cb61321c-331a2e37f3-389390733

sábado, 31 de diciembre de 2016

La paradoja de Fermi: ¿dónde está todo el mundo?
Si existen miles de millones de posibilidades de que haya civilizaciones inteligentes, ¿por qué ninguna ha contactado todavía con nosotros?

Artículo originalmente escrito por Tim Urban. Traducción de Eva Millán.
Tomado de EL PAIS, ESPANA 



..................................................................................................................................................
Todo el mundo siente algo cuando está en un sitio desde el que se ven muy bien las estrellas en una noche especialmente estrellada y mira hacia arriba y ve esto.
Algunos prefieren lo tradicional y se sobrecogen por la belleza épica del universo o les impresiona su absurda escala. Yo, personalmente, me decanto por la clásica “crisis existencial y posterior comportamiento extraño durante la siguiente media hora”. Pero todo el mundo siente algo.
El físico Enrico Fermi también sintió algo: ”¿Dónde está todo el mundo?”.


Un cielo repleto de estrellas parece enorme... pero lo que vemos no es más que nuestro vecindario más próximo. En las mejores noches posibles podemos ver hasta 2.500 estrellas (aproximadamente una cienmillonésima parte de las estrellas de nuestra galaxia), y casi todas ellas están a menos de 1.000 años luz de nosotros (o un 1% del diámetro de la Vía Láctea). Así que a lo que realmente estamos mirando es a esto:

Cuando se enfrentan al tema de las estrellas y galaxias, una pregunta que atormenta a la mayoría de los humanos es: “¿Hay más vida inteligente ahí fuera?”. Veamos algunos números.
Hay tantas estrellas en nuestra galaxia (100.000 - 400.000 millones) como galaxias hay en el universo observable, aproximadamente, así que por cada estrella en la colosal Vía Láctea hay toda una galaxia ahí fuera. Si las sumamos todas llegamos al intervalo típicamente citado de entre 1022 y 1024 estrellas en total, lo que significa que por cada grano de arena en cada playa de la Tierra hay 10.000 estrellas ahí fuera.

El mundo científico no acaba de ponerse de acuerdo sobre qué porcentaje de esas estrellas son de “tipo solar” (similares al Sol en tamaño, temperatura y luminosidad): las opiniones suelen estar entre el 5% y el 20%. Quedándonos con el cálculo más conservador (5%), y el extremo más bajo del número total de estrellas (1022), nos da 500 trillones o 500 millones de billones de estrellas de tipo solar.

También hay un debate sobre qué porcentaje de esas estrellas de tipo solar podrían ser orbitadas por un planeta similar a la Tierra (uno con temperatura y condiciones similares que pudiese tener agua líquida y albergar potencialmente una vida similar a la de la Tierra). 

Algunos dicen que serían hasta el 50% de ellas, pero vamos a quedarnos con el más conservador 22% que se extrajo de un estudio reciente de la PNAS. Esto sugiere que hay un planeta potencialmente habitable como la Tierra orbitando alrededor de al menos un 1% del total de estrellas del universo —un total de 100 millones de billones de planetas parecidos a la Tierra.

Así que hay 100 planetas análogos a la Tierra por cada grano de arena del mundo. Piensa en ello la próxima vez que estés en la playa.
A partir de aquí no tenemos más remedio que entrar completamente en el terreno de la especulación. Imaginemos que después de millones y millones de años de existencia, un 1% de esos planetas parecidos a la Tierra desarrollan vida (si eso es verdad, cada grano de arena representaría un planeta con vida en él). E imagina que, en el 1% de esos planetas, la vida avanza hasta un nivel inteligente como lo hizo aquí en la Tierra. Esto significa que habría 10.000 billones de civilizaciones inteligentes en el universo observable.

Volviendo a nuestra galaxia y haciendo el mismo cálculo con la estimación más baja de estrellas en la Vía Láctea (100.000 millones), obtendríamos que hay mil millones de planetas análogos a la Tierra y 100.000 civilizaciones inteligentes en nuestra galaxia.
El SETI (Search for Extraterrestial Intelligence, o Búsqueda de inteligencia extraterrestre) es una organización dedicada a prestar atención a las señales de vida inteligente. Si estamos en lo cierto y hay 100.000 civilizaciones inteligentes o más en nuestra galaxia, e incluso si solo una fracción de ellas está enviando ondas de radio o rayos láser u otros modos de intentar contactar con otros, ¿no debería la colección de satélites del SETI estar captando todo tipo de señales? ........Pero no lo ha hecho. Ni una. Nunca.

¿Dónde está todo el mundo?
Y la cosa se vuelve aún más extraña. Nuestro sol es bastante joven comparado con la edad del universo. Hay estrellas mucho más viejas con planetas parecido a la Tierra mucho más viejos, lo que en teoría debería haber dado civilizaciones mucho más avanzadas que la nuestra. Por poner un ejemplo, vamos a comparar nuestra Tierra de 4.540 millones de años con un hipotético Planeta X de 8.000 millones de años de edad.


Si el Planeta X tiene una historia parecida a la de la Tierra, veamos en qué punto estaría su civilización a día de hoy (usamos como referencia el periodo naranja para mostrar lo enorme que es el periodo verde):


La tecnología y el conocimiento de una civilización tan solo 1.000 años por delante de nosotros nos resultarían tan chocantes como lo sería nuestro mundo para una persona medieval. Una civilización con un millón de años de adelanto con respecto a la nuestra sería tan incomprensible para nosotros como lo es nuestra cultura humana para los chimpancés. Y el Planeta X nos lleva 3.400 millones de años de ventaja...

Hay algo llamado Escala de Kardashov que nos ayuda a agrupar civilizaciones inteligentes en tres amplias categorías según la cantidad de energía que usan:
Una Civilización Tipo I tiene la habilidad de usar toda la energía de su planeta. Nosotros no llegamos a ser un Tipo I del todo, pero nos quedamos cerca (Carl Sagan creó una fórmula para esta escala que nos sitúa en una civilización Tipo 0,7).

Una Civilización Tipo II puede aprovechar toda la energía de su estrella anfitriona. Nuestros débiles cerebros apenas pueden imaginar cómo se podría hacer esto, pero lo hemos intentado lo mejor que hemos podido, imaginando cosas como la esfera de Dyson.


Una Civilización Tipo III arrasa a las otras dos, accediendo a un poder comparable al de toda la galaxia de la Vía Láctea.
Si este nivel de avance parece difícil de creer, recuerda el Planeta X de antes y sus 3.400 millones de años de desarrollo de ventaja. Si una civilización del Planeta X fuera parecida a la nuestra y hubiera sido capaz de sobrevivir hasta llegar al nivel del Tipo III, lo natural es que probablemente ya hubiera dominado el viaje interestelar, incluso podría haber colonizado toda la galaxia.
Otra hipótesis de cómo podría producirse la colonización galáctica sería: 

Crear  maquinaria que pueda viajar a otros planetas, pasarse unos 500 años autorreplicándose usando las materias primas del nuevo planeta y después mandar dos réplicas a hacer lo mismo. Incluso sin viajar a una velocidad que no se acerque ni a la de la luz, este proceso colonizaría toda la galaxia en 3,75 millones de años, un relativo abrir y cerrar de ojos cuando hablamos de una escala de miles de millones de años:



Fuente: Scientific American, “Where Are They”

Siguiendo con la especulación, si un 1% de la vida inteligente sobrevive el tiempo suficiente como para llegar a ser una civilización Tipo III colonizadora de galaxias, nuestros cálculos de antes sugieren que debería haber al menos 1.000 civilizaciones Tipo III solo en nuestra galaxia —y teniendo en cuenta el poder de tal civilización, lo más probable es que su presencia fuera bastante notoria. Y, aun así, no vemos nada, no oímos nada y no nos visita nadie.
Bienvenido a la paradoja de Fermi.
No tenemos respuesta para la paradoja de Fermi —como mucho podemos ofrecer “posibles explicaciones”. Y si se pregunta a diez científicos distintos cuál creen que es la correcta, darán diez respuestas distintas. 
¿Recuerdas cuando los humanos del pasado debatían sobre si la Tierra era redonda o si el Sol giraba alrededor de la Tierra o pensaban que ese rayo había caído por Zeus, y ahora nos resultan tan primitivos y desinformados? Pues así es cómo estamos nosotros con este tema.
Para echarle un vistazo a algunas de las explicaciones posibles de la paradoja de Fermi más debatidas, vamos a dividirlas en dos amplias categorías —aquellas explicaciones que entienden que si no hay ningún indicio de las civilizaciones de Tipo II y Tipo III es porque no existe ninguna de ellas ahí fuera, y aquellas otras que asumen que sí que están ahí fuera, pero no estamos viendo ni oyendo nada de ellas por otras razones:

Grupo 1 de explicaciones: no hay indicios de civilizaciones superiores (Tipo II y III) porque no existen civilizaciones superiores.

Aquellos que suscriben las explicaciones del Grupo 1 señalan algo llamado el problema de la no exclusividad, que rechaza cualquier teoría que diga “hay civilizaciones superiores, pero ninguna de ellas ha establecido ningún tipo de contacto con nosotros porque todas _______”. 

La gente del Grupo 1 se fija en los cálculos que dicen que debería haber tantos miles (o millones) de civilizaciones superiores que al menos una de ellas debería ser la excepción a la regla. Incluso si esa teoría afectara al 99,99% de las civilizaciones, el otro 0,01% se comportaría de forma distinta y seríamos conscientes de su existencia.

Por tanto, dicen las explicaciones del Grupo 1, debe ser que no existen civilizaciones super avanzadas. Y como los cálculos sugieren que hay miles de ellas tan solo en nuestra galaxia, algo más debe de estar pasando.

Ese algo más se llama El Gran Filtro.
La teoría del Gran Filtro dice que, en algún punto desde la pre-vida hasta la inteligencia Tipo III, hay un muro contra el que todos o casi todos los intentos de vida chocan. Hay alguna etapa del largo proceso evolutivo que es extremadamente improbable o imposible que la vida supere. Esa etapa es el Gran Filtro.




Si esta teoría es cierta, la gran pregunta es ¿en qué punto de la línea temporal ocurre el Gran Filtro?.
Resulta que, cuando estamos hablando del destino de la humanidad, esta pregunta es muy importante. Dependiendo de dónde ocurra el Gran Filtro, nos deja tres realidades posibles: somos excepcionales, somos los primeros, o estamos jodidos.

1. Somos excepcionales (el Gran Filtro está detrás de nosotros)
Una esperanza que tenemos es que el Gran Filtro esté detrás de nosotros —hemos conseguido superarlo, lo que significaría que es extremadamente inusual que la vida llegue a nuestro nivel de inteligencia. El diagrama de abajo muestra solo a dos especies consiguiendo pasarlo, y nosotros somos una de ellas.



Este escenario explicaría por qué no hay civilizaciones Tipo III… pero también significaría que nosotros podríamos ser una de las pocas excepciones ahora que hemos conseguido llegar tan lejos. Significaría que hay esperanza. Superficialmente, esto suena un poco a la gente de hace 500 años sugiriendo que la Tierra es el centro del universo —implica que somos especiales
Sin embargo, algo que los científicos llaman “sesgo antrópico” sugiere que cualquiera que se plantee su propia rareza forma parte inherentemente de un “caso de éxito” de la vida inteligente -y ya sean realmente inusuales o bastante comunes, los pensamientos que se plantean y las conclusiones que sacan serán idénticos. Esto nos obliga a admitir que ser especiales es, al menos, una posibilidad.
Y, si somos especiales, ¿exactamente cuándo nos convertimos en especiales? —esto es, ¿qué paso superamos en el que casi todos los demás se quedan atascados?

Una posibilidad: 
el Gran Filtro podría estar muy al principio —podría ser increíblemente inusual que la vida comenzase en absoluto. Esta es una candidata porque hicieron falta unos mil millones de años de existencia de la Tierra para que finalmente ocurriera, y porque hemos intentado minuciosamente replicar tal acontecimiento en laboratorios y nunca hemos podido hacerlo. Si este es efectivamente el Gran Filtro, significaría que no solo no hay vida inteligente ahí fuera, sino que puede que no haya ningún otro tipo de vida.

Otra posibilidad: 
el Gran Filtro podría ser el salto de la simple célula procariota a la compleja célula eucariota. Después de que las procariotas nacieran, se quedaron tal cual durante casi dos mil millones de años antes de dar el salto evolutivo de ser complejas y tener un núcleo. Si este es el Gran Filtro, significaría que el universo está repleto de células procariotas simples y casi nada más allá de eso.

Hay varias posibilidades más ........

Posibilidad 1....
Algunos llegan a pensar que el salto más reciente que hemos dado hasta nuestra inteligencia actual es un candidato para ser el Gran Filtro. Aunque el paso de vida semi-inteligente (chimpancés) a vida inteligente (humanos) no parece a primera vista un salto milagroso, Steven Pinker rechaza la idea de un “ascenso” inevitable de la evolución: “Ya que la evolución no aspira a una meta sino que simplemente ocurre, usa la adaptación más útil para un nicho ecológico dado, y el hecho de que, en la Tierra, esto haya conducido a la vida inteligente solo una vez hasta el momento puede sugerir que este resultado de la evolución natural es infrecuente y por lo tanto de ningún modo es un desarrollo indiscutible de la evolución de un árbol de la vida”.

La mayoría de los saltos no reúnen los requisitos para ser un candidato a Gran Filtro. 

Cualquier Gran Filtro tiene que ser un tipo de cosa entre un millón en la que una o más ocurrencias totalmente anormales tienen que ocurrir para facilitar una excepción absurda —por eso, algo como el paso de vida unicelular a pluricelular está descartado, porque ha ocurrido hasta 46 veces, en incidentes aislados, tan solo en nuestro planeta. 

Por la misma razón, en caso de encontrarnos una célula eucariota fosilizada en Marte, se descartaría el salto de más arriba de “célula simple a compleja” como posible Gran Filtro (así como cualquier cosa anterior a ese punto en la cadena evolutiva) —porque si ha ocurrido tanto en la Tierra como en Marte, casi con toda seguridad no se trata de una ocurrencia anómala de las de una-entre-un-millón.

Si en efecto somos excepcionales, podría ser por un acontecimiento biológico accidental, pero también podría atribuirse a lo que llamamos la Hipótesis de la Tierra Especial, que sugiere que, aunque puede que haya muchos planetas parecidos a la Tierra,  resulta que las condiciones particulares de la Tierra —ya estén relacionadas con las particularidades de este sistema solar, su relación con la luna (una luna tan grande es inusual para un planeta tan pequeño y contribuye a nuestra meteorología y condiciones oceánicas particulares), o algo del propio planeta —son excepcionalmente acogedoras para la vida.

Posibilidad 2. Somos los primeros



Para los Pensadores del Grupo 1, si el Gran Filtro no se encuentra detrás de nosotros, la única esperanza que nos queda es que las condiciones del universo estén desde hace poco, por primera vez desde el Big Bang, llegando a un punto que permitiría desarrollar vida inteligente. 
En ese caso, nosotros, junto con muchas otras especies, podríamos estar dirigiéndonos a la super inteligencia, y simplemente no habría ocurrido todavía. Estaríamos aquí justo en el momento adecuado para llegar a ser una de las primeras civilizaciones super inteligentes.

Un ejemplo de fenómeno que podría hacer esto realista es el predominio de brotes de rayos gamma, explosiones increíblemente grandes que hemos observado en galaxias lejanas. 
De la misma manera que la Tierra primigenia tardó unos cientos de millones de años antes de que amainaran los asteroides y los volcanes y la vida fuera posible, podría ser que el primer trozo de la existencia del universo estuviera lleno de acontecimientos catastróficos como los brotes de rayos gamma que incinerasen todo alrededor de vez en cuando e impidiesen que la vida se desarrollase más allá de una cierta fase. 
Tal vez ahora nos encontramos en un cambio de fase astrobiológica y esta es la primera vez que una forma de vida ha podido evolucionar tanto tiempo ininterrumpidamente.


3. Estamos jodidos (el Gran Filtro está por delante de nosotros)








Si no somos ni excepcionales ni precoces, los pensadores del Grupo 1 concluyen que el Gran Filtro debe estar en nuestro futuro. Esto sugeriría que la vida evoluciona periódicamente hasta donde estamos nosotros, pero que algo impide a la vida avanzar más allá y alcanzar una inteligencia superior en casi todos los casos —y es poco probable que nosotros seamos una excepción.
Un Gran Filtro futuro posible es un suceso natural catastrófico que ocurra periódicamente, como los brotes de rayos gamma que mencionamos antes, solo que desafortunadamente aún no han acabado y es solo cuestión de tiempo antes de que toda la vida de la Tierra sea aniquilada por uno de ellos. Otro candidato es la posible fatalidad de que casi todas las civilizaciones acaben autodestruyéndose una vez alcanzan un cierto nivel de tecnología.
Esto es por lo que el filósofo de la Universidad de Oxford Nick Bostrom dice que “el que no haya noticias es una buena noticia”. El descubrimiento de incluso vida sencilla en Marte sería devastador, porque eliminaría una gran cantidad de potenciales Grandes Filtros detrás de nosotros. Y si encontrásemos vida compleja fosilizada en Marte, Bostrom dice que “sería de lejos la peor noticia jamás impresa en la portada de un periódico”, porque significaría que el Gran Filtro estaría casi definitivamente por delante de nosotros —condenando a la larga a la especie. Bostrom cree que cuando se trata de la paradoja de Fermi, “el silencio del cielo nocturno vale oro”.


Grupo 2 de explicaciones: las civilizaciones inteligentes Tipo II y III están ahí fuera -y hay razones lógicas por las que podríamos no saber de ellas.

Las explicaciones del Grupo 2 eliminan cualquier noción de que somos excepcionales o los primeros de nada —por el contrario, creen en el principio de mediocridad, cuyo punto de partida es que nuestra galaxia, sistema solar, planeta o nivel de inteligencia no tienen nada de inusual ni de excepcional hasta que se demuestre lo contrario. También son mucho menos proclives a asumir que la falta de pruebas de seres de inteligencia superior sea una prueba de su no existencia —haciendo hincapié en el hecho de que nuestra búsqueda de señales se extiende solo hasta unos 100 años luz de lejos de nosotros (0,1% de la galaxia) y sugiriendo una serie de posibles explicaciones. He aquí diez:

Posibilidad 1) La vida super inteligente bien podría haber visitado ya la Tierra, pero antes de que estuviésemos aquí. En el gran contexto del universo, los seres humanos conscientes solo han estado presentes unos 50.000 años, un segundillo. Si hubo contacto antes de eso, podría haber hecho flipar a unos patos que habrían salido corriendo hacia el agua y ya. Además, la historia escrita solo se remonta 5.500 años —un grupo de cazadores-recolectores podría haber experimentado una movida muy loca con aliens, pero no tenían ninguna forma de contárselo a nadie del futuro.

Posibilidad 2) La galaxia ya ha sido colonizada, pero resulta que vivimos en una zona rural y desierta de la galaxia. Los europeos podrían haber colonizado las Américas mucho antes de que nadie en una pequeña tribu inuit en el extremo norte de Canadá se hubiera enterado de lo que había pasado. Podría haber un elemento de urbanización en los asentamientos interestelares de las especies superiores, en que todos los sistemas solares cercanos son colonizados y comunicados entre sí, pero no sería práctico ni tendría sentido que nadie se dedicara a venir aquí a una parte remota de la espiral en la que vivimos.

Posibilidad 3) Todo el concepto de colonización física le resulta un concepto delirantemente atrasado a las especies más avanzadas. ¿Recuerdas la imagen de la civilización Tipo II de antes con la esfera sobre su estrella? Con toda esa energía, podrían haber creado el medio ambiente perfecto para sí mismos que satisficiera todas sus necesidades. Podrían tener formas demencialmente avanzadas de reducir su necesidad de recursos y ningún interés por dejar su feliz utopía para explorar el frío, vacío y subdesarrollado universo.
Una civilización aún más avanzada podría considerar todo el mundo físico como un lugar terriblemente primitivo, habiendo conquistado ya hace tiempo su propia biología y cargado sus cerebros en un paraíso de vida eterna en la realidad virtual. La vida en el mundo físico de la biología, mortalidad, deseos y necesidades podría ser para ellos como vemos nosotros a las especies oceánicas primitivas que viven en el mar gélido y oscuro. Para tu información, pensar en otra especie que haya dominado la mortalidad me hace sentir envidia y tristeza.

Posibilidad 4) Hay civilizaciones depredadoras aterradoras ahí fuera y la mayor parte de la vida inteligente sabe que es mejor no emitir señales al exterior y anunciar su ubicación. Este es un concepto desagradable y ayudaría a explicar la falta de señales recibidas por los satélites del SETI. También quiere decir que nosotros podríamos ser los novatos super ingenuos que están siendo increíblemente estúpidos y arriesgados al transmitir señales al exterior. Hay un debate ahora mismo sobre si deberíamos participar en METI (Messaging to Extraterrestrial Intelligence —lo contrario del SETI) o no, y la mayoría dice que no deberíamos. Stephen Hawking advierte de que “si los alienígenas nos visitasen, las consecuencias serían como cuando Colón llegó a América, lo que no salió muy bien para los nativos americanos”. Incluso Carl Sagan (un partidario por lo general de que cualquier civilización lo suficientemente avanzada para el viaje interestelar sería altruista, no hostil) llamó a la práctica de METI “profundamente imprudente e inmadura”, y recomendó que “los chicos más nuevos en un cosmos extraño e incierto deberían escuchar en silencio durante mucho tiempo, aprendiendo pacientemente sobre el universo y comparando apuntes, antes de gritarle a una jungla desconocida que no entendemos”. Miedo.

Posibilidad 5) Solo hay un caso de vida con inteligencia superior -una civilización “super depredadora” (como lo son los humanos aquí en la Tierra)- que está mucho más avanzada que todas las demás y se mantiene en esa posición exterminando cualquier civilización inteligente una vez pasan un cierto nivel. Esto sería una mierda. Podría ser así: exterminar a todas las inteligencias emergentes es un uso ineficiente de recursos, seguramente porque la mayoría se extinguen solas. Pero pasado un cierto punto, los super seres mueven ficha —porque para ellos, una especie inteligente emergente se vuelve como un virus una vez empieza a crecer y expandirse. Esta teoría sugiere que el que fuera el primero de la galaxia en alcanzar la inteligencia ganó, y ahora nadie más tiene ninguna posibilidad. Esto explicaría la falta de actividad ahí fuera porque el número de civilizaciones super inteligentes sería solo una.

Posibilidad 6) Hay un montón de actividad y ruido ahí fuera, pero nuestra tecnología es demasiado primitiva y estamos prestando atención a las cosas equivocadas. Como si entrases en un edificio de oficinas moderno, encendieses un walkie-talkie, y cuando no escuchases ninguna actividad (que por supuesto no escucharías porque todo el mundo está hablando por WhatsApp, no usando walkie-talkies), concluyeras que el edificio debe de estar vacío. O tal vez, como ha señalado Carl Sagan, podría ser que nuestras mentes funcionan exponencialmente más rápido o más despacio que otra forma de inteligencia exterior —por ejemplo, ellos tardan 12 años en decir “Hola”, y cuando oímos esa comunicación, nos suena a ruido.

Posibilidad 7) Estamos contactando con otra vida inteligente, pero el gobierno lo oculta. Cuanto más leo sobre el tema, más me parece una teoría estúpida, pero tenía que mencionarla porque se habla mucho de ella.

Posibilidad 8) Las civilizaciones superiores son conscientes de nuestra existencia y nos están observando (también conocida como “la hipótesis del zoológico”). Por lo que sabemos, las civilizaciones super inteligentes existen en una galaxia firmemente regulada, y a nuestra Tierra la tratan como parte de un enorme parque natural protegido, con una política estricta de “se mira, pero no se toca” para planetas como el nuestro. Nosotros no los percibiríamos, porque si una especie mucho más lista quisiera observarnos, sabría hacerlo fácilmente sin que nosotros nos diéramos cuenta. A lo mejor hay una regla parecida a la “Primera Directiva” de Star Trek, que prohíbe a los seres super inteligentes establecer ningún contacto abierto con especies inferiores como nosotros o mostrarse de ningún modo hasta que la especie inferior haya alcanzado cierto nivel de inteligencia.

Posibilidad 9) Las civilizaciones superiores están aquí, a nuestro alrededor. Pero somos demasiado primitivos como para percibirlas. Michio Kaku lo resume así:
Digamos que hay un hormiguero en medio del bosque. Y justo al lado del hormiguero construyen una superautopista de diez carriles. Y la pregunta es “¿Serían las hormigas capaces de entender qué es una superautopista de diez carriles? ¿Serían capaces las hormigas de entender la tecnología y las intenciones de los seres que construyen la autopista a su lado?”.

Así que no es que no podamos recibir las señales del Planeta X usando nuestra tecnología, es que ni siquiera podemos comprender qué son los seres del Planeta X o lo que intentan hacer. Está tan por encima de nosotros que incluso si realmente hubieran querido explicárnoslo, sería como intentar enseñarle a las hormigas qué es internet.

Así mismo, esto podría responder también a “Bueno, si hay tantas sofisticadas civilizaciones Tipo III, ¿por qué no han contactado con nosotros todavía?”. Para responder a eso, preguntémonos —cuando Pizarro se adentró en Perú, ¿se paró un momento en un hormiguero a intentar comunicarse? ¿Fue magnánimo, intentando ayudar a las hormigas del hormiguero? ¿Se volvió hostil y frenó su misión original para ponerse a destrozar el hormiguero? ¿O fue el hormiguero completamente irrelevante para Pizarro? Esa podría ser nuestra situación.
Y tambien nos enconramos con la Situación 10) 
Estamos completamente equivocados con respecto a nuestra realidad. Hay muchas maneras de las que podríamos simplemente estar totalmente equivocados en todo lo que pensamos. El universo podría parecer de una forma y ser cualquier otra cosa completamente diferente, como un holograma
O a lo mejor nosotros somos los alienígenas y nos han plantado aquí como un experimento o como una forma de fertilizante. Incluso existe la posibilidad de que todos formemos parte de una simulación por ordenador de algún investigador de otro mundo, y que otras formas de vida simplemente no hubieran sido programadas en la simulación.


Mientras nuestra posiblemente inútil búsqueda de inteligencia extraterrestre continúa, no estoy del todo seguro de mi postura. Francamente, descubrir tanto que estamos oficialmente solos en el universo como oficialmente acompañados por otros sería escalofriante, lo que es común a todas las tramas surrealistas listadas anteriormente —sea cual sea realmente la verdad, es alucinante.

Más allá de su sorprendente componente de ciencia ficción, la paradoja de Fermi también me deja un profundo sentimiento de humildad. No solo la típica humildad de “oh, sí, soy microscópico y mi existencia dura tres segundos” que siempre despierta el universo. La paradoja de Fermi revela una humildad más afilada y personal, una que solo puede darse tras pasarte horas de investigación, escuchando a los científicos más reconocidos de tu especie presentar teorías demenciales, cambiar de opinión una y otra vez y contradecirse violentamente unos a otros —recordándonos que las generaciones futuras nos verán igual que vemos nosotros a los antiguos que estaban seguros de que las estrellas eran la cara inferior de la bóveda del cielo, y pensarán “madre mía, realmente no tenían ni idea de lo que ocurría”.

Para agravar la situación, está el golpe a la autoestima de nuestra especie que conlleva toda esta charla de civilizaciones Tipo II y III. Aquí en la Tierra somos los reyes de nuestro pequeño mundo, orgullosos de reinar sobre el enorme grupo de imbéciles con los que compartimos planeta. Y en esta burbuja sin competencia y sin nadie que nos juzgue, es poco frecuente que nos enfrentemos al concepto de ser una especie dramáticamente inferior a nadie. Pero después de pasar mucho tiempo con las Civilizaciones Tipo II y III, nuestro poder y orgullo parece un poco como de David Brent.

Dicho esto, dado que mi perspectiva habitual es la de que la humanidad es una huérfana solitaria en una roca minúscula en medio de un universo desierto, la lección de humildad de que probablemente no seamos tan listos como creemos y la posibilidad de que mucho sobre lo que estamos seguros pueda estar equivocado, suena maravilloso. Deja la puerta abierta, aunque solo sea una rendija, a que tal vez, solo tal vez, puede que haya algo más de lo que nos damos cuenta.

Wait But Why publica regularmente. Enviamos cada post por email a más de 110.000 suscriptores  —deja aquí tu email y te añadiremos a la lista (solo mandamos unos pocos mails al mes). También puedes seguir a Wait But Why en Facebook y Twitter.

FUENTE: