The cosmological natural selection (CNS) hypothesis holds that the fundamental constants of nature have been fine-tuned by an evolutionary process in which universes produce daughter universes via the formation of black holes. Here, we formulate the CNS hypothesis using standard mathematical tools of evolutionary biology. Specifically, we capture the dynamics of CNS using Price's equation, and we capture the adaptive purpose of the universe using an optimization program. We establish mathematical correspondences between the dynamics and optimization formalisms, confirming that CNS acts according to a formal design objective, with successive generations of universes appearing designed to produce black holes.

Cosmological natural selection and the purpose of the universe
Andy Gardner, Joseph P. Conlon
Complexity, Early View

Recent publications related to complex systems
Curated by Complexity Digest