miércoles, 25 de diciembre de 2013

Existe Dios o no.....?????

Un amigo me pregunta si tengo evidencia o certeza acerca de la existencia de Dios. Le he contestado así:

Indicaciones de la existencia de Dios tengo .No sé si es una algunas o muchas, dado que la cantidad es irrelevante. 

Si es una o muchas dependen de cual fraccionada este mi convicción o cuan unitaria sea. Pero es una convicción, una certeza intuitiva, aunque estas no sean las palabras correctas para describir tal conocimiento. 
Una convicción que tiene su asidero en el uso de mi lógica. Obvio yo veo pruebas, pero otros no ven en tales pruebas absolutamente ninguna deducción confirmatoria de la existencia de Dios y prefieren achacar lo que yo veo como correlaciones intencionales, programadas, pensadas...al azar, al accidente, a la casualidad. 
Esas pruebas tienen que ver con lo macro y con lo micro.

En lo macro: la forma en que están dispuestas todas las distancias y valores de correlaciones astronómicas que hacen posible la existencia de lo que llamamos vida en este planeta. Si tales distancias y valores fuesen distintas la vida no existiría, pero no existirían tampoco lo que antecede a la vida que conocemos: las galaxias, las estrellas, el polvo interestelar, la materia intergaláctica, es decir todos los constituyentes macros del Universo , bien se encuentren reunidos, bien dispersos. 
En lo micro: Aquí opera el mismo razonamiento: la forma en que están dispuestas todas las  interrelaciones entre la materia que llamamos inerte, pero que está  afecta a cambios, modulaciones y transformaciones  que poco a poco en miles de millones de años van dando forma a lo que la ciencia descubre en el Universo.  Y en la relación y comportamiento de los organismos: desde el más simple hasta el más complejo, todos ellos revelan una correlación que hace posible el fino entramado de la vida. Esa interrelación  de los componentes  de la vida habría sido estadísticamente imposible si todos los procesos anteriores mencionados estuviesen en una correlación  distinta. 
Si bien no puede deducirse ninguna  indicación  teleológica o direccionalidad entre todos los componentes  pues entran en juego muchas variables (algunas conocidas, otras desconocidas) todo indica, para mí, una intención inteligente…que se vale de leyes , correlaciones, dimensiones, que unidas todas ponen en evidencia tal inteligencia que algunos reputan es de orden matemático, o metafísico, o  divino. 
Sea que esa inteligencia matemática, metafísica o divina haya recurrido  primero a hacer  leyes fundamentales para que dirijan el comportamiento de la materia en lo micro y en lo macro , o que caprichosamente determine la correlación entre ellas y  por tanto, de que estas constriñan su capacidad de operación o no,   tengo para mí que tal conjunción de leyes fundamentales y de intencionalidad inteligente conjugadas, dan como resultado -como afirmaba  Einstein- de que ¨exista algo en vez de nada¨, pues matemáticamente daría lo mismo, sólo que sin nosotros para dar fe de ello.
Ahora bien, si se reflexiona sobre el sentido de que  ¨existe algo en vez de nada¨: y todo fuese solo resultado del azar la vida toda como tal no tendría sentido alguno.
Careciendo de sentido para todo: los quarks, los átomos, la materia, las células, los tejidos, los seres vivos, y por tanto la interrelación  de todo con todo, tal carencia de sentido es una insensatez mayúscula atribuible a: la nada , el azar, a meros accidentes sin interrelación causada, sino  tan solo casual. Y a lo casual no se le deben buscar interrelaciones  entre sus diversos componentes.

Si la insensatez es atribuible a  la Nada, es totalmente irrelevante que los seres vivos tiendan a perpetuarse, a protegerse, a procrear, a insertarse en un ciclo de vida sin sentido. Y por tanto las decisiones que tomemos durante nuestra corta existencia amen de carecer de sentido no deben-de manera alguna -estar sujetas a disposición alguna, pues nada tendría sentido. La vida sería una mera insensatez.
De igual manera, si la insensatez es atribuible a un eventual creador, y ese  eventual  creador no tiene un plan preconcebido, quedamos en la misma situación: la vida carece de sentido e igualmente carece de sentido todo lo que hagamos, sea bueno o malo, pues ya no tendría tampoco sentido calificar nuestras acciones de ninguna manera.
Muy distinto es el caso de que pensemos que la vida tiene un eventual Creador  , pues resulta que,  aunque no entendamos para que, este eventual creador ha dispuesto todo para que exista la vida, y la vida existe. Y entonces existe con condicionamientos.
Algunos de esos condicionamientos, serian, a modo de ejemplo los que siguen: 
a. No podemos penetrar su inteligencia. El no poder penetrar su inteligencia no significa que no exista, solo significa que no podemos entenderle. El eventual Creador, al que damos el nombre de Dios es trascendente a nosotros. No es inmanente. Esto expresado de otra manera significa que ese Creador es distante, no próximo, no convive con nosotros.
b. De igual manera no podemos entender el papel del mal, el sufrimiento, el dolor en nuestras vidas. Y la explicación eclesial de que es para que tengamos consciencia de la diferencia entre el Bien y el Mal, al menos a mí no me satisface, pero no puedo recurrir a otra , toda vez que no existe otra interpretación distinta.
Podríamos seguir buscando otros condicionamientos puestos entre el eventual Creador y nosotros. Basten estos por ahora y agreguemos:  igual un Creador hubiese arreglado las cosas para que fuésemos capaz de pensarlo, entenderlo y saber que existe, y de igual manera habría  arreglado las cosas para que  no existieran la miseria, el dolor, el sufrimiento, el mal y nuestras preocupaciones en torno a estos temas.
Ahora bien, con  todas las limitaciones supra citadas, puedo, sin embargo sacar algunas conclusiones por mera intuición y con el uso de mi lógica.
Creo en la existencia de un Creador. Todo me habla inteligentemente de su acción, no de su esencia, tampoco de sus intenciones, todo lo cual debo inferir de tan solo unos pocos elementos al alcance de mi mente.  El sencillo, pero a la vez complejísimo plan  de creación incluye estos elementos básicos:
a. Según los últimos conteos de la ciencia cosmológica , lo que conocemos como Universo  aparece en una explosión  primigenia, sobre la que aún se debaten detalles precisos, hace unos13.700 mil millones de años atrás con una explosión primigenia o Big Bang, que inicia el espacio y el tiempo, inexistentes antes.
b. Con la aparición del Sistema Solar hace 4.600 mil millones de años atrás, se inicia la conformación del planeta que nos alberga que debe sufrir muchas transformaciones para que aparezca la vida.
c. Comprimiendo el tiempo y saltándome sucesos, con la aparición de un anticipo del humano hace 1.300 millones de años,  apenas adquirimos las  condiciones   evolutivas actuales  hace  unos 40.000 años, atrás.  
d. Si para que entendamos su plan de trabajo  fue necesario que el Creador  nos enviase un hijo hace apenas poco más de 2013 años para que se redimiera por nosotros, me es difícil enmarcar tal acto (pasajero y aun no aceptado  y solo entendido por solo una fracción humana) en el calendario histórico  de la creación toda  y en el mosaico de la vida que la Ciencia nos indica.
e. Ahora bien, el envío de su hijo a nosotros en la fecha histórica citada tendría sentido, si hacemos estas correlaciones:
Si el Creador (que hace malabarismos con leyes ciegas y con intenciones direccionadas) para originar el Universo conocido y lo que aún no conocemos, es además un Creador que conoce su creación (y por ende la debilidad de nuestra hechura física-mental-moral) el concepto de pecado (una condición que deviene como parte de nuestra debilidad de hechura) que   lleva o bien a una condenación eterna o a una salvación eterna ,  serían bien   una pena excesiva o bien una recompensa desmedida. O bien un acto de Amor, un acto de Misericordia por parte del Creador.
Haciendo esta sencilla relación:
a. El creador conoce que somos débiles
b. El creador sería injusto si nos condenase eternamente por tales debilidades que son parte de su creación .
Esto aplica aun  ante el concepto de libre albedrío, tan llevado y traído por muchos, pero  el que estimo se encuentra acotado por la genética, la cultura y los sucesos de cada época, pero  se acompaña de un elemento adicional que requiere entrar en la ecuación
El elemento que nos falta en la ecuación lo hemos denominado los humanos Consciencia . Y esta sería una especie de ¨portal¨ de entrada y salida a la dimensión del Bien o a la dimensión del Mal. Y como la Consciencia no es Fijista, sino Variable, es posible para el ser humano cambiar la ¨codificación¨ de esa llave bidimensional.
Ahora bien: resulta que muchas personas no pueden desplegar toda su conciencia por razones múltiples: genéticas, culturales, época en que nos corresponde vivir, entre otras variables  de lo que devendría  que el Creador debe ser -necesaria y forzosamente- Misericordioso ,Amoroso, para suplir tales deficiencias o incorrecciones humanas según nuestra lectura acotada. 
Si solo con la Misericordia (léase comprensión del ser Superior) hacia el ser creado (por conjunción de factores  bien teleológicos , y o accidentales) es capaz de darle sentido a la vida creada por El, tiene sentido el vivir (pese a nuestras limitaciones de comprensión) de por qué el vivir es así y no asá …) comportándonos a tono con los dictados de nuestra consciencia ( bien se encuentre desarrollada mucho, poco o nada…) .
Notar que para este concepto de creencia en un Creador no es necesario profesar religión alguna, pues todas, sin excepción, están plagadas de los mismos errores humanos que nacen de nuestra debilidad intrínseca. Basta, según infiero yo emplear ese elemento que llamamos Consciencia.
Basta tener consciencia de que la vida tiene sentido y si tiene sentido es porque no es el resultado de la conjugación del azar en múltiples formas y dimensiones, sino que detrás de ellos-aunque no entendamos como-hay una intención. Y tal intención tiene inteligencia. Aunque tal clase de inteligencia no la comprendamos en nuestra condición de seres limitados deficientes, confundidos y soberbios.
Unas reflexiones finales:
1. Por qué tal deficiencia, limitación y confusión?  No le encuentro sentido, a la  razón  por la que el Creador habría sacrificado ,según nuestra contabilidad humana imperfecta en estos temas trascendentes a cientos de cientos de generaciones de seres humanos (depende de si contamos desde el Pitecántropos hacia acá o solo desde el Homo Sapiens cuando se hace más ¨sabio¨ según las teoría darwinista y neo-darwinista , hacia acá) y haciendo a un lado a esas generaciones  ,únicamente nos habría suministrado   mejores niveles de conocimiento y de comprensión   solo a las nuevas generaciones más dotadas de inteligencia.
2. Tal clase de economía evolucionista no la entiendo. Cómo tampoco entiendo por cual razón el Creador habría escogido este camino y no otro siendo Omnisciente y Todopoderoso.
3. Por tanto deduzco que la contabilidad humana presenta el defecto de no tener en cuenta que las generaciones anteriores al envío del hijo del Creador, Jesús a nuestro planeta, no han sido sacrificadas, sino que dado el Amor  a su creación de parte del creador, son objeto del mismo trato Amoroso.
4. Incluso: hay personas que suelen decir que el “pecado” de Judas” de haber vendido a Jesús, hijo de Dios, le tiene en el Infierno (véase este como eventual lugar de tortura o como simple “lugar” de ausencia de visión del Creador).
No lo creo así. Un Dios omnisciente, Todopoderoso no sería justo condenando a un ser eternamente en virtud de que la razón que lleva a Judas a hacer tal acto era parte inevitable de una historia conocida de antemano por el mismo Creador y por tanto por Jesús (su hijo).
Y lo mismo se aplicaría al supuesto Adán y Eva bíblicos que no podrían ser condenados por actos que eran ya conocidos por su Creador y que supondrían un “acto histórico” (como sea que haya sido…) que tendrían que jugar los padres primigenios de la humanidad.
Creo que la frase más exacta de que Ciencia y Fe son complementarias, aunque no sepamos exactamente como se complementan ,es la pronunciada por Einstein-  más incrédulo que creyente - cuando afirma: ” La Ciencia sin la Religión es coja, la Religión sin la Ciencia es ciega”
Las fabulas  y metáforas en que están  arraigadas  las creencias humanas, de la cual no escapan las tres  religiones occidentales :Judaísmo-Cristianismo - Islamismo es un lenguaje apto para la humanidad en la época en que recibía tales enseñanzas (más cercanas a la ignorancia acientífica)…pero hoy día son una verdadera barrera para el eventual creyente más racional que desea fundar su Fe (mi caso) no en la fábula, sino en la ciencia.
Muchas veces he escrito que la vida para mí sería más sencilla si solo tuviese la mitad de la Fe de mi esposa, pero no teniéndola he debido  ir deduciendo e infiriendo la existencia de un Creador como producto de mis reflexiones (muchas inexactas e incompletas y por ende débiles) pero cargadas cada vez más con una convicción de que la Vida sin un Creador es un hecho no concebible para mí.
Porque el Creador ha dispuesto que sea así..?  es un hecho que no logro entender pero que debo aceptar, si es que deseo que mi vida tenga un sentido….
Y de hecho mi vida tiene un sentido: creo no ser fruto del azar, de la necesidad, de la casualidad, sino de un Creador, al que denomino Dios.
Y creo que Jesús es parte de esa divinidad, aunque no logre racionalmente encajar su aparición en una parte de la historia de la creación y de la historia de la humanidad, pero como no tengo toda la película completa, solo puedo sacar deducciones y estas son incompletas también.  
Y creo que de mi inferencia se desprende una necesidad: creer en un acto de amor anticipado de ese creador- el que, amén de darme las condiciones aptas para que urgiese mi  vida y dentro de estas mis elucubraciones -  y es el de haber permitido que su hijo Jesús iluminara mi camino cuando afirma:   
¨ ¡La Verdad os hará libres!¨  y yo vivo buscando esa verdad para obtener esa libertad. Y lo hago en el acotado libre albedrio que me pertenece: equivocándome y rectificando según me dicta la Consciencia.

25 diciembre 2013

martes, 29 de octubre de 2013

Proof of the Existence of God, according Goedel Theorem

Formalization, Mechanization and Automation of Gödel's Proof of God's Existence

Goedel's ontological proof has been analysed for the first-time with an unprecedent degree of detail and formality with the help of higher-order theorem provers. The following has been done (and in this order): A detailed natural deduction proof. A formalization of the axioms, definitions and theorems in the TPTP THF syntax. Automatic verification of the consistency of the axioms and definitions with Nitpick. Automatic demonstration of the theorems with the provers LEO-II and Satallax. A step-by-step formalization using the Coq proof assistant. A formalization using the Isabelle proof assistant, where the theorems (and some additional lemmata) have been automated with Sledgehammer and Metis.
Comments:2 pages
Subjects:Logic in Computer Science (cs.LO); Artificial Intelligence (cs.AI); Logic (math.LO)
MSC classes:03Axx, 68T27, 68T30, 68T15
ACM classes:F.4.1; I.2.3; I.2.4
Cite as:arXiv:1308.4526 [cs.LO]
 (or arXiv:1308.4526v4 [cs.LO] for this version)

Download:

Source: Archiv  

domingo, 27 de octubre de 2013

On the Relation Between the Higgs Field, Short-Range Forces and the Widom-Larsen Theory

Version X7
                                                                                             
                                                                       Jacques Chauveheid
                                                                  e-mail: jchauve@hotmail.com



Abstract
A variant of the Einstein-Cartan theory [1] details the relation between short-range forces and nuclear reactions, according to masses of fermions being proportional to the Brout-Englert-Higgs scalar field [2]. The asymmetry between electron and nucleon sustains the primary concept of electrical neutrality through a weak nuclear force mechanism in the Widom-Larsen theory.

Key-words: Cartan's program, strong-nuclear force, weak interaction, two-body problem, Newton's third principle, neutron stars.


I. INTRODUCTION
Eddington mentioned the concept of asymmetric affine connection in 1921 and pointed out applications in microphysics but did not pursue his idea [3]. In 1922, Elie Cartan introduced geometric torsion, as the antisymmetric part of an asymmetric affine connection. In May 1929, Cartan wrote a letter to Einstein [3] in which he recommended the use of the differential formalism he developed, however Einstein did not follow Cartan's advice. Einstein-Cartan theories constitute an important group of theoretical approaches following Cartan's geometric program and linking torsion to spin [1, 3].

Between 1944 and 1950, J. Mariani published four papers dealing with astrophysical magnetism [4] and introduced an "ansatz" structurally similar to that used in the present theory. The German word "ansatz" refers to a supposed relationship between fields of distinct origin, for example geometric contrasting with physical. Einstein also used an ansatz when he identified gravitation with the 4-space metric, but he did not put it in the form of an equation, presumably because looking too trivial.

The organization of the paper is as follows: Section II details the Lagrangian formulation and the calculus of variations. Section III is about field equations and quantitative expressions of forces. Section IV introduces short-range forces between charged particles, first referred to as strong-nuclear between nucleons. Section V is on Yukawa and complexity. Section VI describes short-range forces in both systems electron-proton and electron-neutron, evidencing a weak nuclear mechanism in the Widom-Larsen theory.

When not stated otherwise, mathematical conventions are those of reference [1].


II. THE THEORY AND ITS METHOD

The Lagrangian of this theory is mainly gravitational and electromagnetic. Besides a new constant, five fields include geometric torsion. This Lagrangian also produces a theory of motion in the form of quantitative expressions of short-range forces such as nuclear and weak.

The procedure retrieves Einstein's equation for gravitation and Maxwell's linear electromagnetism in vacuum. The torsion structure is part of an extended 4-dimensional Einstein-Hilbert Lagrangian, whose full affine connection includes the torsion T schematically introduced through the ansatz T = FJ (without indices), where F is the electromagnetic field and J is the electric current density. Torsion produces three Lagrangian terms evidencing quadratic electromagnetic couplings, subsequently describing short-range forces and magnetic moments coupled with electromagnetism [1].

A simpler Lagrangian, in reduced form for motion, produces the classical forces acting on massive matter, through coordinate variation. These forces include short-range forces interpreted as strong-nuclear and weak, besides spin forces [5] not calculated so far. A third quantum Lagrangian is also part of the theory but does not include yet the specific quadratic field couplings relative to the short-range forces, which might lead to strong-nuclear and weak forces expressed in terms of probability packets [6].

Due to the local character of physical forces, implied by the presence of the current J and a non-vanishing torsion in massive matter, the first and second Lagrangians only define field equations and forces inside massive matter, here synonymous to electrically charged particles such as electrons and quarks. This is so because forces act on massive matter at its precise location, not close to it in vacuum if one accepts that massive particles are not singularities of fields in vacuum. Nevertheless, this formalism is easily extended to the usual description of forces in vacuum, together with cosmology [1].

Somewhat summarizing the nuclear problem, a coupling of torsion to massive matter, via electrodynamics, evidences the quadratic structure of torsion in an enlarged Einstein-Maxwell theory implying squared electromagnetism covering short-range forces such as nuclear and weak.

About equations, attempting to extract all interactions from a system of field equations is not applicable in this theory, because one derives field equations by varying separately all fields representing variable entities in a field Lagrangian. From a second Lagrangian for motion, one obtains a unique equation of motion, containing all interactions, by varying the 4-coordinates of one massive (charged) particle. There is therefore no reason to confuse both processes, apart from their common field Lagrangian. Moreover, the same Lagrangian field couplings were introduced in a third quantum Lagrangian that includes Schrödinger's field, which produces a wave equation retrieving Schrödinger's equation in a non-relativistic weak field approximation. This operation leads to energy definition through Hamiltonian wave-solutions of Schrödinger's time-dependent equation (of evolution) [1].

In other words, these three Lagrangians describe fields inside matter and the forces acting in vacuum on this massive matter, which here is electrically charged. Physics thus appears quite far from a unique theoretical model, besides the Standard Model and a rather long list covering classical mechanics, thermodynamics, numbers of quantum approaches and more.


III. EQUATIONS OF MOTION

In general relativity, the trajectories of matter are geodesics. This is the consequence of the variational postulate δS = 0, whose action S is defined by the line-integral implying the gravitational force [7] in a curved 4-space in general relativity:

S = - mcds = pkdxk,          (1a)

where pk is the 4-momentum defined by

pk ≡ mcdxk/ds ;  (ds2 ≡ - dxkdxk).          (1b)

For other interactions, gravity is switched off [3] and the formalism of special relativity is used. Such interactions are derivable from the action [7]

S = (pk + eNk)dxk,          (2)

where e is the electric charge and Nk is the enlarged vector potential constructed from the Lagrangian densities containing the electric current density. An ensuing equation of motion, encompassing all interactions besides gravity, is derived from (2) by the sole variation of coordinates. One verifies

δ(ds2) = 2ds(δds) = - 2dxkδdxk.          (3)

Eq. (3) implies

(δpk)dxk ≡ 0,          (4)

obtained by replacing pk with its expression (1b). For the variation of (2), one uses δdxk = dδxk and δNk = ∂iNkδxi, integrating by parts according to the known procedure, which gives

δS = (pk + eNk)δxk [dpk - e(∂kNi - ∂iNk)dxi]δxk          (5)

(from points A fo B).

In accordance with usual limit conditions, the null-variation of S (δS = 0) implies the equation of motion

Fk ≡ dpk/dt = e(∂kNi - ∂iNk)dxi/dt,          (6)

where Fk is the generalization of the Newtonian force in special relativity. Since dt is not an invariant, Fk is not a vector.

Since (2) avoids the summation symbol for various particles, the equation of motion (6) is restricted to a system formed by different fields and only one particle, at the approximation that one moving body does not affect the fields. The aim is delimiting the general problem of interactions in the simplest case, being aware that this technique is apparently limited to a 2-body problem. This method is now applied to the field Lagrangian £ [1] defined by

£/√g ≡ (1/2K)[R + Ta,bc(Ta,bc + ΦJ(aFbc))] + AiJi
       
           - (1/4μo)FikFik + αΦJiJi,          (7)

where gab is the symmetric metric tensor with g ≡ - det(gab). Ta,bc is the torsion tensor and parentheses around three indices mean their cyclic permutation, Jk is the electric current density. Ak is the 4-vector potential, Fik is the electromagnetic tensor and R is Riemann's scalar. K is Einstein's constant of gravitation and μo is the magnetic permeability of vacuum. Φ is a scalar field and α is a (new) constant. Furthermore, agreeing with Poincaré's definition of science as a system of relations [8], only the relation between torsion and physical fields is meaningful regarding the relation between geometry and physics.

In line with next equations (16) to (18), the line-integral (2) for motion will arise as a 4-volume integration of the Lagrangian terms, which in (7) include the electric current density Ji containing the 4-velocity c(dxi/ds), used for coordinate variation. For motion, one thus discards the terms not containing Ji.

Consequently, in special relativity (gravitation switched off [3]) this procedure leads to the second reduced Lagrangian scalar L for motion, given by

L ≡ (1/2K)Ta,bcΦJ(aFbc) + AiJi + αΦJiJi,          (8)

where

Ta,bc = - (Φ/2)J(aFbc)           (9)

is the equation-definition for torsion [1]. One details

Jk ≡ ρouk = ρoc(dxk/ds) = ρ(dxk/dt)          (10)

(uk is the 4-velocity), where ρo is the rest electric charge density and ρ is this charge density in the referential of the observer, so that (10) implies

ρ = ρo / (1 - v2/c2)1/2.          (11)

Using (9), one puts (8) in the form

L = NiJi + αΦJiJi,          (12)

with

Na ≡ Aa - (3Φ2 / 4K)J(aFik)Fik,          (13)

due to the substitution of torsion by the right member of (9) and the identity

J(aFbc).J(aFbc) = 3JaFbc J(aFbc).          (14)

One first shows that the second "nuclear" term including JiJin the right member of (12) produces the line-integral (1a) after 4-volume integration, according to the mass condition [1]

m = αΦρoe,         (15)

where the mass m characterizes an infinitesimal quantity of massive matter.

Electrically charged matter and massive matter being synonyms here, the extension by integration of Eq. (15) at the particle level implies that the mass of any massive particle is roughly proportional to the average value of the scalar field Φ inside matter. The Φ-field is therefore the Brout-Englert-Higgs scalar in classical form, without which no massive matter would exist in a nonsensical universe. This scalar field plays a key-role in next equations (16) to (18) clarifying the calculation of acceptable quantitative expressions of non-gravitational forces. Since the existence of Einstein's solutions for gravitation in a static, spherically symmetric space-time implies the existence of Φ [1], the mass m in Eq, (15) is at the same time inertial and gravitational, respecting the equivalence principle. The Einstein solutions express that gravity unites all forms of mass-energy and imply that αΦ is not constant.

The Φ-field was introduced as a variable physical quantity uniting in matter the mass m with its corresponding electric charge e, both quantities varying according to a common radius, which is seen in (15) put at the particle level in the approximate form

m = αΦe2 / V,          (15b)

where the scalar Φ provides the necessary quantization of particle radius, without which the particle size would be indeterminate in a continuum theory  with a continuous metric across the border matter-vacuum. In addition, gauge invariance of the field equations results from infinitesimal variations of Φ, variations subsequently identified to the quantum field Ψ (Schrödinger or Dirac field) [9].

At the particle level, one uses (15) with the notation uk ≡ Jko for relativistic 4-velocity and writes

dt(αΦJkJk)d3x = dt(αΦρoukρ)(dxk/dt)d3x = (m/e)ukρdxkd3x

                        = ∫pkdxk,          (16)

at the particle level where m and e are now the respective mass and electric charge of a particle. NiJi in (12) then gives

dt(NkJk)d3x = dt(Nkρdxk/dt)d3x = eNkdxk,          (17)

and

S ≡ (L.d3x)dt = (pk + eNk)dxk.          (18)

where dxk refers now to the particle trajectory.

Field equations and equations of motion are distinct objects. From the first field Lagrangian £, one gets field equations by varying the fields. From the second matter Lagrangian L, simplified for motion, one derives an equation of motion by varying the coordinates representing the location of matter.

In this theory of motion, massive charged particles are not point-like. However, the framework of motion relative to such particles has no interest in a variable charge density inside matter. From now, one will therefore interpret ρo as the average value of the rest charge density in matter.


IV. SHORT-RANGE FORCES AT THE ELECTRO-NUCLEAR APPROXIMATION

If quantum mechanics can provide quantitative expressions of forces according to Erhenfest's work and the principle of correspondence [6], recognized quantitative expressions for nuclear and weak forces are not available [10].

To evidence short-range forces, one discards the Lorentz force generated by Aa in the right member of (13), whose second term will produce an attractive force in 1/r5, of intensity proportional to the square of the non-relativistic momentum multiplied by the particle volume at rest (see further). This short-range force is distance-dependent [11, 12], in opposition to spin forces of greater local character.

One now calculates the components fa of this short-range force in the approximation of electromagnetism reduced to its electric components, due to the non-relativistic neglect of the magnetic field [6]. Accordingly, this short-range force of electro-nuclear character reads

fa ≡ dpa/dt = e(∂aQb - ∂bQa)dxb/dt,          (19)

with

Qa = - (3Φ2 / 4K)J(aFik)Fik,          (20)

from (13), thus without Aa implying the Lorentz force. Using (15), Eq. (20) then reads

Qa = - (3m2 / 4Kα2e2ρo2)J(aFik)Fik.          (21)

Due to the existence of quarks, the interaction between nucleons is a 6-body problem. However, one will treat the system nucleon-nucleon as a 2-body problem in a first approximation.

Rectangular coordinates characterize the referential Oxy where a first static proton is located at the origin O. A second proton moves above the x-axis, its velocity v being parallel to the y-axis. Using xo = ct in the approximation of point-like protons, the components Ex and Ey of Maxwell's electric field in vacuum, produced by the proton at rest are

Ex = cFxo = ex/r3 ;  Ey = cFyo = ey/r3           (22)

(r2 ≡ x2 + y2 ;  vy ≡ v).

The electric current density reads

Jy = ρovy / Γ ; Jx = 0,          (23)

where Γ ≡ (1 - v2/c2)1/2.          (24)

One calculates

J(xFik)Fik = 2JyFxoFyo ; J(yFik)Fik = - 2Jy(Fxo)2,          (25)

and finds

Qx = (-3m2v / 2Kα2ρoΓc2)(xy / r6),          (26a)

Qy = (3m2v / 2Kα2ρoΓc2)(x2 / r6),          (26b)

Qo = 0.          (27).

The components of fa then read

fx = e(∂xQy - ∂yQx)v,          (28a)

fy = 0.          (28b)

Writing x/r = sinδ, where δ is here the angle between the straight line defined by the two proton centers and the velocity of the moving proton, Eq, (28a) gives

fx = (-9m2v2Vsinδ / 2Kα2c2Γ)/r5           (29)

(fy = 0) where V ≡ e/ρo is the proton volume at rest, previously defined in the approximation of a constant rest electric charge density ρo.

In the more general case of two particles with respective charges e1 and e2, the particle 1 being at rest, (29) goes over into

fx = -[9(m2)2(v2)2V2sinδ / 2Kα2c2Γ ](e1/e2)2/r5,          (30)

where m2, v2, V2, e2 are the respective mass, velocity, volume at rest (V2 ≡ e2o), and electric charge of the moving particle, e1 being  the charge of the particle at rest, r being the distance between the two particles. Eqs. (28) and (30) determine the short-range force exerted by particle 1 on particle 2, which is perpendicular to the velocity of particle 2. The quark structure also implies that (e1)2 and (e2)2 are sums of squared quark charges in the case of nucleons. Accordingly the expression "summed charge squared", worth 1 for a proton and 2/3 for a neutron, figures in ref [13]. Moreover, Eq. (30) applies to all massive particles, here built on electricity (Mie's idea, see below).

These sums of squared quark charges appear concerned by the equation e = Cr, unnumbered formula between Eqs. (45) and (46) in ref. [1], where e is the electric charge, C is a coefficient characterizing a determined particle, or a group of them, r is the radius of a fundamental charged particle such as a quark. This equation is related to the words "neutron mean squared intrinsic charge radius" in ref. [14]. Moreover, the 1/ r5 dependence of the strong interaction came out  in 1926 after unsuccessful attempts with 1/ r2 and 1/ r4 [5, 15], references in which A. Pais recalls the discovery of a non-central component of the nuclear force, discovered by Schwinger and Bethe in 1939. This non-central character was confirmed in the forties [15]. Attractive forces are not necessarily central and the range of the strong-nuclear force is infinite, however its intensity rapidly decreases with distance, reason why this force is referred to as short-range.

There is more on the subject of fundamentals, briefly recalled now. As dynamics is an essential feature of physical theories [6], Mariani's ansatz toward field unification [4] centered on the motion of massive matter, but the problem of motion has little to do with a field theory in vacuum where particles are singularities of the fields (see above). One thus sees that the problem of motion essentially resides inside massive matter, which implies interior solutions of field equations in matter [1]. In 1912, Gustav Mie introduced this idea of matter constituted by fields. Hermann Weyl detailed Mie's theory in his book Space-Time-Matter (Dover, NY 1952, p. 206), in which Weyl reproduced Mie's words when writing: matter is "purely" electrical in nature. Einstein and Leopold Infeld retook this idea of matter constituted by fields in The Evolution of Physics (Simon & Schuster, NY 1938, p. 242).

The present theory in matter reproduces field theories in torsion-free situations. Equations of motion for gravitation and electromagnetism (geodesics and Lorentz's force) are also retrieved. Furthermore, one retrieves quantum mechanics for the hydrogen atom from identical field couplings, including Dirac's magnetic dipole and spin-orbit energies, by introducing additional constants such as the electron charge and mass, besides Planck's constant [1]. Accordingly, the quantum treatment of strong-weak couplings has been done regarding magnetic moments [1], but this procedure needs to be extended to short-range forces, strong-nuclear and weak, since quantum theory is over-imposed on classical structures and models.


V. YUKAWA AND COMPLEXITY

Since perpendicular to velocity in Eqs. (28) and (30), the short-range force does not produce energy (see below). Moreover, this force is firmly non-central, which contrasts with central forces oriented along straight lines connecting two particle centers [11, 12]. A complex and chaotic kinematics, together with a rather unexpected dynamics characterize therefore strong-nuclear forces manifesting a tendency toward unpredictability and instability [15], besides radioactivity opposing nuclear stability.

Apart from this stability issue, nuclear forces are velocity-dependent and complex [15], so that Lev Landau's suggested to limit the study of the strong-nuclear force to binary nuclear interactions ("two by two" [5]). This was probably due to the Yukawa distance and the short-range character of strong-nuclear forces, to what A. Pais added "the nuclear 2-body problem is just too complicated" [15]. However, Pais' words mean that the complexity resides in the nuclear problem, not necessarily in theories describing nuclear phenomena.

About this issue of complexity, the present theory may also look complicated, example of its non-linear version of Maxwell's theory, whose approximation for the electric field in Eqs. (22) may be responsible for the vanishing work (energy) produced by the strong-nuclear force, according to Eqs. (29) and (30). From another standpoint, perpendicularity does not materialize exactly in the real world because 3-dimensional orthogonality is not an invariant in 4-dimensional relativity theory. In contrast, the attractive character of forces is invariant according to a definite arrow of time. To keep things simple, we will from now neglect spin-spin and spin-orbit effects.

Within a non-relativistic approximation (Γ= 1), one makes (e1)2 = (e2)2 and takes the absolute value of the strong-nuclear force between two protons or two neutrons from Eq. (30), equaling its right member to mv2/(R/2) for motion around the center of mass and assuming a circular motion. The factor v2 then simplifies in both members, which gives

R4 = 9mV / 4Kα2c2,          (31)

(sinδ = 1).

The binding of two protons, or two neutrons, consequently implies their fixed separation defining the Yukawa distance R figuring in Eq. (31), for a common particle volume (see further). R is currently valued at 1.4 fermi, which allows the calculation of the constant α according to a nucleon radius of 0.7 fermi (approximation).


VI. WEAK AND STRONG-NUCLEAR FORCES IN THE SYSTEM ELECTRON-NUCLEON

A. Electrons and nucleons

Landau wrote: "...quantum mechanics occupies a very original position in the range of physical theories; it contains classical mechanics as a limiting case and at the same time needs this limit to be founded" (translation [5]). In agreement with Bohr's correspondence, one then sees the importance of a classical theory of motion and forces, before a quantum treatment evidencing probability packets [6] bringing new elements, besides reassuring the calculation of the important tunnel effect within an appropriate framework.

In a first approximation, the strong-nuclear force presented here does not produce energy to realize nuclear fusion. This situation looks a bit deceiving but leads to a somewhat realistic deduction. Nuclear fusion, based on the unique role of the strong-nuclear force, still does not present a high degree of probability after many years of hot fusion experiments. Other phenomena could therefore intervene.

Before neutron formation with emission of a neutrino, the electron capture by a proton is a bound system electron-proton constituting a two-body system respecting Newton's principle of equality between action and reaction, in an energy conservative bound system not interfering with energy-momentum conservation for the fields around it. The phenomenon of orbital electron capture from atomic levels K, L, M exists in neutron stars [16]. Its classical description implies the presence of two short-range forces, detailed now without writing the electrostatic force between proton and electron, because this force cancels out in both members of next Eq. (33) expressing equality of action and reaction for motion around the center of mass.

Quark charges in a proton are 2/3, 2/3, -1/3, whose sum of squared charges = 1 is the same as the squared charge of the electron, which implies (e1)2 = (e2)2 in Eq.(30). Within a non-relativistic approximation (Γ =1), one writes an equation whose left member is the intensity of the short-range force exerted by a proton on an electron, the right member expressing the converse. Simplifying both members by

9 / 2Kα2c2r5,          (32)

yields

(me)2(ve)2Ve = (mp)2(vp)2Vp,          (33)

with sinδ = 1 for both forces in opposition, in relation with round orbits of particle centers (analogy with Bohr's 1913 model). The square root of both members gives

meve = mpvp(Vp / Ve)1/2.          (34)

In Eq. (30), the attractive short-range force is proportional to the squared non-relativistic momentum of a particle, now retrieved in the left member of Eq. (33), whose square root produces meve in the left member of Eq. (34). The time-derivative of both members then reads

[m(dv/dt)]e  =  [m(dv/dt)]p(Vp / Ve)1/2.          (35)   

whose left member is the force dp/dt figuring in Eq. (19), acting now on the electron. For consistency, therefore not only in relation with Newton's third principle, one writes

[m(dv/dt)]e  =  [m(dv/dt)]p,          (36)

implying

Vp = Ve .        (37)

The electron and the proton have therefore the same volume in this theory.

One repeats the same procedure, by adapting Eq. (33) to the bound system electron-neutron, taking into account the sum of squared quark charges worth 2/3 for the neutron, which gives

(me)2(ve)2Ve(2/3) = (mn)2(vn)2Vn(3/2).         (38)

In relation with Eq. (36), one writes

meve = mnvn,          (39)

for equality of absolute values of momenta, so that Eq. (38) reduces to

Vn = (4/9)Ve.        (40)

This result would be unphysical if the proton and neutron volumes need to be equal for defining a unique Yukawa length in Eq. (31). However, the imperfect equivalence between (p-p) and (n-n) interactions is an established fact (“very similar” [5]). In this view, the 18 % difference for R in Eq. (31) might be physical, and not important enough to discard this type of capture, in spite of apparent lack of observational data. All this seems good news for the possibility of electron capture by a neutron, part of the Widom-Larsen theory [17, 18].

Spherical symmetry, fundamental in Bohr's model of the hydrogen atom and Schrödinger's equation in atomic theory  seems typical in relation with a “weak nuclear force” [16] in Eq. (33), here referring to two distinct forces of equal intensity in the system electron-proton. The weak force acts on the electron with the same intensity as if the source were another electron, instead of a proton, and  the second strong-nuclear force acts on the proton with the same intensity as if the source were another proton, instead of an electron. Short-range forces work this way because proportional to the squared mass of the particle acted upon, multiplied by the factor (e1/e2)2 defined in relation with quarks.

Here, the bound system electron-proton represents the electron capture through two forces, strong-nuclear and weak, system literally characterizing a “weak nuclear” mechanism of forces, according to which proton and electron react. In relation with this, ref. [16] indicates “β-decay applies to all nuclear reactions implying neutrinos or anti-neutrinos” summarized by

p + e- n + νe,          (41)
adding that “all these reactions are ruled by the weak nuclear force”, represented here by two forces, strong-nuclear and weak of equal intensity, which are Newton's inevitable action and reaction. The left member of (41) presents the electron capture explaining the neutralization of the Coulomb barrier (including eventual shielding during definite time intervals before neutron formation ?). The Widom-Larsen theory [17, 18] comprehends this electron capture producing a neutron subsequently fusing with a nucleus, since being acted upon by the conjunction of all nuclear forces between nucleons.
In conclusion, the bound system electron-proton with two distinct forces, weak and strong-nuclear of equal intensities, contrasts with the scenario of two strong-nuclear forces representing action and reaction in the usual outline of nuclear fusion between protons. This, as in the sun where the presence of electrons in momentary bound systems electron-proton could play a role in the fusion of hydrogen [19], but this is another story. Obviously, the differentiation between short-range forces in the weak nuclear scenario of electron capture by a proton supports the low energy approach to nuclear fusion.


B. Numbers

From Eq. (30), the coupling constant of the weak force between two electrons is (me)2, which constitutes a first number. According to the approximation mn ≈ mp, the strong nuclear force between two nucleons is characterized by the coupling constant (mp)2. Based on mp = 1836 me, the coupling constant of the strong-nuclear force between nucleons is 3.37 x 106 times greater than the coupling constant of the weak force between electrons, this is the second number.

In the bound system electron-nucleon, the weak nuclear mechanism includes the two coupling constants (mp)2 and (me)2 because two distinct forces are present. Since the weak force acts on the electron and the strong-nuclear force acts on the nucleon, the mean value of these two coupling constants would be half the second number above, so roughly 1.69 x 106 because (me)2 is negligible in regard to (mp)2. However, this third number is unrelated to relative intensities of these two forces in a bound system where the equality between action and reaction implies the equality of both forces. In relation with Eq. (30), the non-central short-range force is velocity-dependent, so that relative force intensities are relative values of squared non-relativistic momenta, in opposition to relative values of coupling constants.


COMMENTS
Einstein's program, formulated at Princeton in 1932, recommends the retrieval of general relativity and Maxwell's electromagnetism, as a step toward incorporating other theories, even explaining quantum mechanics [20], which is only feasible from a Lagrangian containing a quantum field [1]. In vacuum, the present theory retrieves general relativity and Maxwell's theory in torsion-free situations. In matter, one gets the usual energy-tensor in the right member of Einstein's equation, standard procedure in classical unification. In addition, generalized Maxwell's equations inside matter include additional couplings of torsion with the electromagnetic field, due to the non-vanishing of torsion in massive matter.

Mathematically speaking, the present theory follows Cartan's geometric program based on torsion [3]. Moreover, usable physical results, chiefly for technologies concerning new energy sources, hardly come from equations only since equations mean little without their solutions. One thus needs to calculate these solutions to uncover crucial relations and conditions that would remain undisclosed in the absence of Einstein's gravitational solutions.

Einstein's equation appears indispensable because gravitation unites all forms of mass-energy, including massless particles. In this view, the Lagrangian formulation provided  solutions of Einstein's equation, in a static spherically symmetric gravitational field, which led to the mass condition (15) and the classical scalar Φ-field of Higgs essence.


REFERENCES
[1] J. Chauveheid: A Proposal for a Quadratic Electromagnetic Coupling Based on the Underlying Philosophy of Einstein-Maxwell Theory, Physics Essays, 10, 474 (1997).


[3] F. Hehl, P. von der Heyde, G. Kerlick, J. Nester: Rev. Mod. Phys. 48, 3 (July 1976).

[4] M.-A. Tonnelat: Les Théories Unitaires de l'Électromagnétisme et de la Gravitation (Gauthiers-Villars, Paris 1965), pp. xviii, xix, 220, 283.

[5] L. Landau and E. Lifshitz: Mécanique Quantique (Mir, Moscow 1967), pp. 10, 511, 517, 519.

[6] W. Heisenberg: Principes Physiques de la Théorie des Quanta (Gauthier-Villars, Paris 1957), pp. 29, 101, 104.

[7] L. Landau and E. Lifshitz: The Classical Theory of Fields (Addison-Wesley, Reading, MA 1961), pp. 56, 73, 268.

[8] W. Yourgrau and S. Mandelstam: Variational Principles in Dynamics and Quantum Theory (Dover, NY 1979), p. 170.

[9] J. Chauveheid : On the Connection between Classical and Quantum Fields, Physics Essays, 12, 146 (1999).

[10] Sunil Kumar Singh in

[11] N. Koshkin and M. Shirkévich: Manual de Física Elemental (Mir, Moscow 1975), p. 220.

[12] K. Sholkin: Física del Micromundo (Mir, Moscow 1972), pp. 82, 94, 107.

[13]

[14]

[15] A. Pais: Inward Bound: of Matter and Forces in the Physical World (Oxford University Press, 1986), pp. 124, 238, 240, 403, 417, 441, 481, 483.

[16]

[17]

[18]

[19] S. Weinberg: Gravitation and Cosmology (John Wiley & Sons, NY 1972), pp. 546, 556.

[20] A. Pais:Subtle is the Lord...": The Science and the Life of Albert Einstein (Oxford University Press, 1982).