domingo, 27 de febrero de 2011

viernes, 25 de febrero de 2011

Large Hadron Collider powers up to unravel mysteries of nature

Large Hadron Collider powers up to unravel mysteries of nature

February 24, 2011 by Chelsea Whyte and Justin Eure, MEDILL
Large Hadron Collider powers up to unravel mysteries of natureEnlarge

Physicists at CERN rob hydrogen atoms of their protons, compact them into bunches and inject them into the series of four accelerator rings. Each ring in the sequence amplifies the energy of the protons and guides the subatomic particles with powerful magnets. Finally, two proton beams are flung in opposite directions at nearly the speed of light and smashed together at one of four detectors. Then the sparks fly. Credit: Justin Eure/MEDILL
Outside the small village of Meyrin, Switzerland, horses graze quietly in fields lined by the Jura mountains. You'd never know it by the idyllic landscape, but 300 feet below the Swiss-French border, the Large Hadron Collider is searching for the secrets of the universe. A 17-mile circular tunnel houses the world’s largest atom smasher that is once again firing high-energy proton beams.
On Monday, the Control Center turned on the LHC beams to begin the next two-year run of the particle collider. CERN directors decided to extend the run through the end of 2012, instead of shutting down in 2011 for repairs as previously planned, and spirits are running high among scientists working in the field of new physics.
Researchers from across the world engineer detectors and seek to solve the mysteries of matter in an international collaboration that reaches from Chicago to Mumbai.
“Recently there was a convention in Chamonix,” said Georgios Choudalakis, a Greek physicist on the ATLAS experiment at the LHC. “The heads of the experiments and the director of the laboratory decided that we will take data for 2 years. And the decisive criterion for this was the sensitivity to the Higgs, so we’re optimistic.”

The search is on for the Higgs! The international team of scientists at CERN recalls the bumpy history of the Large Hadron Collider, from disastrous delays to recent results that are exceeding expectations. The physicists anticipate breakthroughs in the next two years that will change our fundamental understanding of the universe. Video credit: Chelsea Whyte and Justin Eure/MEDILL.
This comes on the heels of the news that 2011 will be the end of the run for the Tevatron, the second most powerful particle collider in the world located at the Fermi National Laboratory in Batavia. After setbacks and shutdowns, the LHC had collisions in 2010 that went even better than expected. “We made it clear even to ourselves that the page has turned,” said Choudalakis. “The energy frontier is not at the Tevatron anymore. We are cutting more ice here.” Now, the hunt for the Higgs is on at CERN, the Conseil Européen pour la Recherche Nucléaire.
The elusive Higgs particle is, according to the theory, a fundamental building block of matter and the reason everything has mass.
“Nobody can explain where mass comes from, but we know it’s there,” said Pauline Gagnon, a French physicist at the . This conundrum is the most important question physicists have to answer, she said.
“If you think of a one pound bag of salt and you add up the weights of each grain of salt, they will logically equal one pound,” said Gagnon. But, when physicists break down atoms in this way and try to determine the weight of the pieces inside, the calculations of the weight of atomic building blocks such as quarks and electrons don’t add up, she said. Here’s where the Higgs comes in.


The proposed Higgs particle is a part of a field that permeates everything. According to theory, it is a particle’s interaction with the Higgs field that creates drag on a particle, giving it mass. Picture a business man walking through a pool in a suit. The water in the pool is like the Higgs field and, as it soaks into his clothing, it will weigh him down and he will move more slowly. He becomes massive.
Although it has been predicted as the final puzzle piece that completes the Standard Model of physics – the leading explanation for atomic interaction – the existence of the Higgs has never been proven. If such a particle exists, experiments at the LHC should be able to detect it.
“We have indirect suggestions of where it should be if the Higgs exists,” said Choudalakis. “But that is if it exists.” If it can’t be found, the Standard Model will have to be rewritten.
In the next two years, the LHC will resume collisions at 7 TeV, or tera electron volts, between the two beams – the highest energy levels achieved in recent years. The decision at Chamonix mandates that energy in the beams will be kept at this conservative level to avoid the types of machine failures that shut down the LHC in 2008, Gagnon said.
At those energy levels, the two particle beams travel through miles of tubes surrounded by 1,700 superconducting magnets that force bunches of charged particles around the ring and through accelerators designed to increase their speed to within a percentage of the speed of light.
The particle beams, each made up of hundreds of billions of protons, began making their way around a series of underground tubes Monday, guided magnetically and gaining speed and energy. The beams start out about as big around as an index finger and, within microseconds they complete their journey through the four accelerator rings into the LHC and are compressed down to the size of a human hair.
“The beams, at 7 TeV, will have an energy which is the same kinetic energy of a 747 landing, so imagine a big airplane which is landing and smashing against a wall – this is the energy of the LHC beams,” said Mirko Pojer, an Italian and the engineer in charge of the CERN Control Center.
Large Hadron Collider powers up to unravel mysteries of nature


The sections of beam tube that make up the main ring of the LHC are surrounded superconducting magnets that each weigh 27 tons. Credit: Justin Eure/MEDILL
The two beams, moving in opposite directions, collide at 4 points along the ring where the separate LHC experiments house their detectors, which gather data to analyze the collisions that occur every 25 nanoseconds. Two of the experiments at CERN are designed to detect a possible Higgs particle. Though they have the same goal, the ATLAS and CMS detectors are designed to look at particle collisions differently.
ATLAS, the larger of the two detectors, stands 82 feet high and houses an enormous magnet system that bends the paths of charged particles after collisions in order to measure their momentum, which identifies them.
CMS, the Compact Muon Solenoid, as its name suggests, is more compact than ATLAS. The CMS detector is designed around a large coiled magnet, which creates a uniform magnetic field that is 100,000 stronger than the Earth’s. CMS measures the subatomic debris of the collisions, hunting for signs of the Higgs.
The 3,000 scientists at ATLAS and the 2,000 scientists at CMS are in a race to be the first to make the biggest scientific discovery of the century.
The next two years of operation will provide enough particle collisions for a groundbreaking discovery. If the Higgs exists, the physicists at CMS or ATLAS will see evidence of the particle. With the amount of data that the LHC will be able to gather in the next two years, scientists expect to confirm the existence or absence of the Higgs, said Gigi Rolandi, an Italian and the physics coordinator for the CMS.
These detectors are truly wonders of the modern age. Like the Acropolis or the Great Wall of China, the LHC is just as incredible a feat of engineering, though it cannot be seen as readily. “It’s a real pity that these detectors are underground,” said Choudalakis. “If they were on the surface, everybody would be very proud of what mankind has done.”
At CERN, the discovery of the fundamental building blocks of nature are just around the corner. “People are thrilled by this, and well deservedly,” said Choudalakis. “What is beautiful about science, especially on a big scale like this, is that it makes you feel like you have a little chance in your life, from your humble starting point, to touch your finger on history and leave a fingerprint on it. Imagine history as a big piece of glass. Most people don’t even get close, and you have a chance to leave your fingerprint on it. I think it’s one of the noblest missions a person can have.”
While the discovery of the Higgs would indeed be a milestone for the world of physics, and a tidy completion of the Standard Model, sometimes messy is far more interesting.
“Like we say, if we do not discover the Higgs particle, it will be even more interesting to find out what else is there in the physics and in nature which then controls the amplitudes of interactions of the particles,” said Slawomir Tkaczyk, a Polish physicist on the CMS experiment. “So, after 10 or 15 years of hard work, the most exciting times are still ahead of us.”

This story is republished courtesy of Medill Reports. Medill Reports is written and produced by graduate journalism students at Northwestern University's Medill school.
Source: Medill Reports

Fuente: PhsyOrg

domingo, 20 de febrero de 2011

La fe en la ciencia impide comprender el por qué del universo

La fe en la ciencia impide comprender el por qué del universo

Según Paul Davies, hay que indagar en las leyes de la física para encontrar respuestas últimas


El científico y divulgador Paul Davies ha publicado un artículo en The New York Times en el que critica la incapacidad de la ciencia de explicar el por qué del origen del universo físico. Las leyes de la física son tan incuestionables para los científicos como lo es Dios para los cristianos, afirma, pero hasta ahora nadie se ha preguntado de dónde vienen esas leyes ni por qué son como son. Ciencia y religión están basadas por tanto en la fe, afirma, y eso impide conocer el por qué del mundo físico. Davies propone que, para alcanzar una respuesta más profunda, se deben entender las leyes de la física y el universo que éstas gobiernan como parte de una parcela de un sistema unitario, e incorporarlo todo junto dentro de un esquema explicativo común. Por Olga Castro-Perea.



Paul Davies
Paul Davies
Se dice que la ciencia es la forma más fiable de conocimiento porque está basada en hipótesis comprobables, mientras que la religión está basada en la fe, que dentro del contexto religioso se entiende como una virtud, explica el autor Paul Davies en un artículo publicado en The New York Times.

Davies es un reputado físico, escritor y locutor británico que actualmente dirige el Centro Beyond for Fundamental Concepts in Science, de la Universidad del Estado de Arizona, y que a lo largo de los años ha publicado una veintena de libros de divulgación científica, como “Dios y la nueva física " (1984), en el que se analizaba el rol de la religión en la sociedad, entre otros temas.

En el artículo publicado por el New York Times, Davies analiza la evidente separación conceptual entre ciencia y religión, así como la razón por la que la ciencia está desembocando en las mismas preguntas que la religión intenta contestar.

Realmente, la ciencia tiene su fe, afirma Davies: ningún científico podría serlo si no creyera de antemano que su objeto de estudio –el universo en cualquiera de sus niveles- no responde a un elegante orden matemático. Esta fe, señala, hasta la fecha ha estado justificada por los resultados de los análisis.

Preguntas más profundas

La expresión más refinada, asegura, de una inteligibilidad racional en el cosmos puede encontrarse en las leyes de la física, que son las reglas fundamentales con las que funciona la Naturaleza. Existe, sin embargo, una pregunta más profunda: ¿de dónde proceden dichas leyes? Y ¿por qué son como son?

Según Davies, los físicos se han dedicado a describir fenómenos como el electromagnetismo o la gravedad sin tratar de indagar en su origen. Se daba por hecho que existían y que, para ser científico, se debía tener fe en que el universo está gobernado por leyes matemáticas inmutables, absolutas y universales, aunque sin un origen específico.

A lo largo de los años, Davies asegura haber preguntado a sus colegas físicos por qué las leyes de la física son las que son, a lo que ellos le han contestado que ésa no es una cuestión científica y que “no existe una razón por la que son lo que son, simplemente son”, respuesta que a Davies le parece profundamente anti-racional.

El físico se cuestiona por tanto si el poderoso edificio del orden de la física con el que percibimos el mundo, puede estar en último extremo basado en un absurdo injustificado. Y, si lo estuviera, añade, ¿es que la Naturaleza es capaz de convertir el sin sentido y la absurdidad en un ingenioso orden?

Cambio en la mentalidad científica

Según Davies, actualmente las inclinaciones científicas están cambiando considerablemente, y el cuestionamiento sobre el origen de las leyes que rigen la Naturaleza comienza a cobrar interés. Parte del aumento de este interés es el hecho de que cada vez se acepta más que la emergencia de la vida en el universo depende sensiblemente de la forma de esas mismas leyes.

Otra razón es que se está llegando a la comprensión de que las leyes de la física, que durante largo tiempo han parecido universales y absolutas, no son tan fundamentales como se creía, sino que funcionan más bien contextualmente: pueden variar a una escala mega cósmica. Según explica Davies, la visión desde la perspectiva de Dios revelaría una vasta extensión de universos, cada uno de ellos con su particular conjunto de leyes físicas.

Viviríamos por tanto en un “multiverso”, en el que la vida aparecería sólo en aquellos puntos en los que las leyes físicas le fueran favorables. La teoría del mutiverso es cada vez más popular, pero tampoco resuelve la cuestión de la que venimos hablando: el origen de las leyes físicas.

Ciencia y religión están fundadas en la fe

Claramente, por tanto, señala Davies, tanto la religión como la ciencia están fundadas en la fe, particularmente, en la creencia de que existe algo “fuera” del universo –ya sea Dios o un conjunto de leyes físicas de origen inexplicable- que lo ordena. Pero ambas interpretaciones de la realidad fallan, según Davies, al intentar proporcionar una explicación completa del origen de la existencia física.

Esta carencia compartida no es una sorpresa, dado que la propia noción de la ley física es teológica en primera instancia, hecho que hace que muchos científicos se retuerzan. Isaac Newton fue el primero que tomó la idea de un conjunto de leyes inmutables de la doctrina cristiana, que defiende que Dios creó el mundo y lo ordenó de manera racional.

Los cristianos conciben a Dios como fundamento del orden natural, procedente de más allá del universo, y los físicos imaginan sus leyes habitando un reino abstracto trascendente en el que existen relaciones matemáticas perfectas.

Los cristianos asimismo creen que el mundo depende de Dios para su existencia, mientras los físicos declaran que el universo está gobernado por leyes eternas, a las que nada afecta lo que suceda en el universo.

Buscar un por qué en las propias leyes de la física

En opinión de Davies no habrá esperanza de poder explicar por qué el universo físico es como es mientras nos centremos en leyes inmutables o en la imposición de la divina providencia. La alternativa que el físico propone es entender las leyes de la física y el universo que éstas gobiernan como parte de una parcela de un sistema unitario, e incorporarlo todo junto dentro de un esquema explicativo común.

En otras palabras, afirma, las propias leyes podrían aportar la explicación desde el interior del universo, sin necesidad de apelar a un agente externo de creación. Los detalles específicos de esta explicación serán materia de investigación del futuro.

Pero, termina el físico, hasta que la ciencia no consiga una teoría comprobable de las propias leyes del universo, afirmar que la propia ciencia es una forma de conocimiento ajena a la fe es una falsedad evidente.
 
Fuente:Sección de Tendencias21 elaborada con el asesoramiento de la Cátedra de Ciencia, Tecnología y Religión ,Uiversidad Pontificia de Comillas. 

lunes, 14 de febrero de 2011

Por que el Cielo lo vemos azul..?

cielo azul_1.jpg

El cielo es azul por la interacción de la luz del sol con la atmósfera. La luz es una forma de energía que se transmite en ondas electromagneticas que pueden viajar en el vacío o en medios transparentes (como el aire y el agua). La luz del sol es blanca (formada por la suma de todos los colores del arco iris), y la atmósfera contiene una mezcla de moléculas gaseosas (78% nitrógeno, 21% oxígeno, 1% argón y vapor de agua, trazas de otros gases), una cierta cantidad de humedad, normalmente pequeña, así como partículas de polvo y ceniza.

Cuando un rayo de luz atraviesa una gota de agua se desvía un cierto ángulo. La desviación de los colores de la luz es máxima para los azules (con longitud de onda menor). Los rayos azules, una vez que se han desviado, vuelven a chocar con otras partículas del aire, hasta llegar a nosotros. Cuando llegan a nuestros ojos parece que todo el cielo es azul, porque los rayos llegan rebotados de todos los lugares del cielo.


¿Por que el cielo es azul?


Todas las coloraciones y formas que el cielo nos ofrece, tienen una propiedad común: que no pueden imitarse con los medios humanos. Siempre que se intenta reproducirlas sobre un lienzo, un papel, madera o metal, se fracasa irremediablemente. Son obra de un maestro que dispone de medios verdaderamente "celestiales". Su pincel es la luz solar, y su lienzo es el voluble éter con sus nubes y el finísimo tejido del velo del polvo atmosférico: ningún artista dispone de ellos.
THEO LÖBSACK ( El Aliento de la Tierra)
El mar de aire que nos rodea, constituye un inagotable manantial de gozo para nuestros ojos. El azul de una clara mañana de primavera, el rojo anaranjado de un crepúsculo en una llanura, han hecho a los hombres deleitarse, poetizar e investigar una y otra vez. No importa en qué parte de la Tierra vivamos, tenemos todos un mismo cielo en común. En lo alto, el cielo se nos presenta tan pronto azul ultramar como rosado, ahora blanquecino o de un delicado azul celeste, engalanado con nubes en forma de copos, deshechas en desgarrados jirones o potentemente hinchadas. La variabilidad de esta imagen es tan grande que nunca se reproduce exactamente. Y los colores salen de una paleta tan rica, que nuestros pintores dirigen, una y otra vez, su mirada al cielo, para inspirarse en el colorido de una puesta de sol o del arco iris.
La belleza del cielo no es más que el resultado de la interacción de la LUZ del Sol con la atmósfera. Una cantidad de humedad, relativamente pequeña, acompañada de partículas de polvo y de ceniza es suficiente para provocar en el cielo las múltiples manifestaciones de color.
Cuando se dan condiciones atmosféricas especiales, pueden aparecer fenómenos atmosféricos cromáticos como son el Arco Iris, los Círculos de Ulloa, las Coronas solares y lunares, los Halos, Falsos Soles y Falsas Lunas y otros más "raros" (Espejismos, el Rayo Verde, la Luz Sagrada, Auroras Polares, Fuegos de San Telmo...), que son fenómenos ópticos completamente explicables. Aquí nos ocuparemos sólo del fenómeno óptico más común que es el color del cielo, en sus variadas posibles manifestaciones.
El secreto del color azul del cielo esta relacionado con la composición de la luz solar -integrada por los distintos colores del arco iris- y con la humedad de la atmósfera. (El Sol es quien se encarga de procurar al aire su humedad. Con su calor, hace que parte del agua de la superficie terrestre se evapore. En corriente invisible pero incesante, la humedad se dirige hacia el cielo desde los océanos, mares, lagos y ríos; desde el suelo, las plantas y los cuerpos de los animales y del hombre).
Para explicar el color azul del cielo, imaginemos que dejamos pasar un rayo de sol por un prisma de vidrio. La luz se abre en un abanico de colores (se dispersa) por refracción y como resultado de esta dispersión vemos una gama de colores: violeta, azul, verde, amarillo y rojo. El rayo violeta es el que se ha separado mas de la dirección del rayo blanco y ahí esta precisamente la explicación del color del cielo. La desviación es máxima para los rayos de longitud de onda corta (violeta y azul), y mínima para los de longitud de onda larga (amarillos y rojos), que casi no son desviados. Los rayos violetas y azules, una vez desviados, chocan con otras partículas de aire y nuevamente varían su trayectoria, y así sucesivamente: realizan, pues, una danza en zigzag en el seno del aire antes de alcanzar el suelo terrestre. Cuando, al fin, llegan a nuestros ojos, no parecen venir directamente del Sol, sino que nos llegan de todas las regiones del cielo, como en forma de fina lluvia. De ahí que el cielo nos parezca azul, mientras el Sol aparece de color amarillo, pues los rayos amarillos y rojos son poco desviados y van casi directamente en línea recta desde el Sol hasta nuestros ojos.
Si profundizamos un poco más, la explicación es más compleja. La luz es una onda electromagnética y las piezas fundamentales de la materia en su estado más frecuente en la Tierra, son los átomos. Si las partículas existentes en la atmósfera, tienen un tamaño igual o inferior al de la longitud de onda de la luz incidente (átomos aislados o pequeñas moléculas), la onda cede parte de su energía a la corteza atómica que comienza a oscilar, de manera que un primer efecto de la interacción de la luz con las partículas pequeñas del aire es que la radiación incidente se debilita al ceder parte de su energía, lo que le sucede a la luz del Sol cuando atraviesa la atmósfera. Evidentemente esta energía no se queda almacenada en el aire, pues cualquier átomo o partícula pequeña cuya corteza se agita, acaba radiando toda su energía en forma de onda electromagnética al entorno en cualquier dirección. El proceso completo de cesión y remisión de energía por partículas de tamaño atómico se denomina difusión de RAYLEIGH (en honor del físico inglés Lord Rayleigh que fue el primero en darle explicación) siendo la intensidad de la luz difundida inversamente proporcional a la cuarta potencia de la longitud de onda. La difusión será mayor por tanto, para las ondas más cortas: Como consecuencia de ello, llegamos a la misma conclusión, la luz violeta es la más difundida y la menos, la roja. El resultado neto es que parte de la luz que nos llega desde el Sol en línea recta, al alcanzar la atmósfera se difunde en todas direcciones y llena todo el cielo.
El color del cielo, debería ser violeta por ser ésta la longitud de onda más corta, pero no lo es, por dos razones fundamentalmente: porque la luz solar contiene más luz azul que violeta y porque el ojo humano (que en definitiva es el que capta las imágenes -aunque el cerebro las interprete-), es más sensible a la luz azul que a la violeta.
El color azul del cielo se debe por tanto a la mayor difusión de las ondas cortas. El color del sol es amarillo-rojizo y no blanco, porque si a la luz blanca procedente del Sol -que es suma de todos los colores- se le quita el color azul, se obtiene una luz de color amarillo-roja.
La difusión producida por los gases es muy débil, sin embargo, cuando el espesor de gas es muy grande, como sucede en la atmósfera, fácilmente se puede observar la luz difundida.
El hecho de que la difusión sea mayor para las ondas más cortas, es la base de la utilización de los faros antiniebla.
Independientemente de todas las posibilidades que se puedan presentar, puede afirmarse que, cuanto mayor sea el numero de partículas que enturbian el aire, tanto peores serán las condiciones de visibilidad a través de dicho aire.
Si la niebla es "seca", debido a la presencia de humo, polvo o gotitas de agua muy pequeñas, la luz amarilla - que parte de los faros antiniebla- apenas pierde intensidad a causa de la interposición de esta niebla, de manera que resulta visible a través de ella. Si la niebla es "húmeda", los mejores faros contra ella fracasan casi del todo, ya que la niebla húmeda esta formada por gotas grandes que dispersan, casi por igual, todos los colores de la luz blanca. El mismo Sol, visto a través de esta niebla de gotas grandes, aparece desdibujado y de color blanco lechoso, mientras que observado cuando la niebla se debe a polvo fino tiene el aspecto de disco rojo, como ocurre a menudo al ponerse el astro.
Si la luz interactúa con una partícula grande, no funciona el mecanismo de Rayleigh, ocurre un proceso mucho más sencillo: la partícula simplemente absorbe parte de la luz y la otra parte la refleja. Cada partícula se comporta como un espejo pequeñito que reflejará más o menos luz según su composición química y que alterará el color de la luz reflejada si la partícula está formada por sustancias coloreadas. Si la luz se encuentra con una distribución de partículas grandes, parte de la luz se esparce y, además, puede cambiar de color. Este proceso se conoce como difusión de Mie, y el ejemplo más sencillo lo tenemos en las nubes, donde las gotas de agua incoloras, esparcen la luz en todas las direcciones pero sin alterar su color. ( El cielo del planeta Marte es otro ejemplo de difusión de Mie, provocado por partículas coloreadas de tamaño grande, por eso no es azul, porque el tamaño de las partículas no permite la difusión de Rayleigh).
Cuando la difusión de Mie actúa de forma masiva, si las partículas difusoras no son coloreadas, el resultado es la atenuación de la luz blanca hacia grises cada vez más oscuros. Esta es la causa de que en los días muy nublados, cuando las nubes son muy gruesas, el cielo aparezca mas o menos gris, y a veces casi negro.
Las salidas y puestas de sol nos brindan a diario hermosos espectáculos, los mas bellos que el aire puede ofrecer a nuestros ojos.
Si el horizonte es amplio, (como sucede en la ciudad de Badajoz), los efectos se multiplican y el espectáculo es todo un poema.
Al atardecer, el camino que la luz solar recorre dentro de la atmósfera es mas largo, los rebotes sucesivos en unas partículas y otras hacen crecer la probabilidad de que la luz acabe chocando con una partícula absorbente y desaparezca, de manera que incluso la parte amarilla es afectada y difundida y solo los rayos rojos, los más direccionales, siguen un camino casi rectilíneo. De ahí el color rojo del sol poniente.
Los colores que nos ofrece el cielo en estos casos, se originan también gracias a la intervención de las moléculas existentes en el aire y de las partículas que éste tiene en suspensión "el aerosol atmosférico", que dispersan y desdoblan la luz solar de múltiples modos.
Ya antes de que el Sol se hunda en el horizonte, vemos cómo el colorido del cielo se vuelve más intenso, mas saturado. Mientras la luz que aparece en los alrededores del disco solar vira hacia el amarillo-rojizo y en el horizonte resulta verde-amarillenta, el azul del cielo se vuelve más intenso en el cenit.
Cuando el Sol se halla a una distancia angular del horizonte de 1 ó 2°, la luz crepuscular derrama sobre el borde del cielo su mágica luminosidad. Poco a poco, el resplandor amarillo se transforma en una luz rojo-anaranjada, y, finalmente, en una luminosidad centelleante color fuego, que, algunas veces, llega a presentar el rojo color de la sangre. Cuando ya el astro diurno ha desaparecido bajo el horizonte, se observa en el oeste del cielo un resplandor purpúreo, que alcanza su máxima intensidad cuando el Sol ha descendido unos 5° por debajo del horizonte. Encima del lugar en donde se ha puesto el Sol, separado del horizonte por una estrecha franja rojo-parda, suele verse un semicírculo cuyo color varia entre el púrpura y el rosa. Esta coloración se debe en esencia a la refracción de la luz solar en las partículas que enturbian el aire situado entre los 10 y los 20 km. de altura, y desaparece cuando ya el Sol ha llegado a los 7 ° por debajo del horizonte.
Cuando existe una cantidad anormalmente elevada de aerosoles (polvo atmosférico), la luz del amanecer y del atardecer es especialmente roja. Sucede generalmente cuando existen presiones atmosféricas elevadas (anticiclón) ya que la concentración de partículas de polvo en el aire es mayor a altas presiones. Los colores rojos intensísimos que solemos contemplar aquí en Extremadura, por el mes de octubre y en algunas ocasiones esporádicas, pueden ser debidos al aumento de aerosoles por la quema de los barbechos de las cosechas.
Si la tierra no tuviera atmósfera, la luz solar alcanzaría nuestros ojos directamente desde el disco solar y no recibiríamos luz difundida y el cielo aparecería tan negro como por la noche (los astronautas pueden observar durante el día las estrellas, la luna y los planetas debido a que están fuera de la atmósfera).
En casos excepcionales pueden aparecer coloraciones especiales debido a la contribución de los volcanes en actividad. Cuando se produjo la erupción del volcán Krakatoa (26 y 27 de agosto de 1883, -36000 muertos por la erupción-) se presenció en la Tierra un notable ejemplo de ello. La erupción lanzó a los aires un volumen de masas rocosas de la pequeña Isla de Krakatoa (situada en el Estrecho de la Sonda, entre Sumatra y Java) que se estima en unos 18 km3. Trozos de roca del tamaño de una cabeza humana salieron despedidos hacia lo alto con velocidades iniciales de 600 a 1000 m/s, y el estruendo de la explosión se dejó oír en Rodríguez (Isla de Madagascar) a 4774 kilómetros de distancia. El cielo permaneció oscuro durante varios días. Las partículas mas finas de ceniza volcánica expulsadas por el volcán se esparcieron hasta los 80 km de altura, fueron arrastradas por las corrientes atmosféricas elevadas y dieron la vuelta a la Tierra por dos veces. Se produjeron en el aire fantásticos fenómenos cromáticos que continuaban aun meses después del cataclismo; entre otros, se observaron asombrosas coloraciones durante las salidas y puestas de sol y se vieron soles de todos los colores, entre ellos rojo-cobre y verde. También se vieron soles de color azul, como pueden asimismo verse en raras ocasiones en Europa, cuando en el Canadá, por ejemplo, se produce un gran incendio forestal y los vientos del Oeste arrastran hasta nuestro Continente partículas de ceniza finísimas.
Debido a que al atardecer, el camino que la luz solar recorre dentro de la atmósfera es mas largo, como hemos indicado anteriormente, es por lo que el Sol se ve más achatado y ancho pues el efecto de refracción a través de la atmósfera es muy grande.
Por último, el color negro de la noche, es debido a que a la atmósfera que rodea al observador, apenas llega luz y por tanto no se puede dar suficiente difusión.

sábado, 5 de febrero de 2011

Universo : vision global actualizada

Universo

De Wikipedia, la enciclopedia libre
Para otros usos de este término, véase Universo (desambiguación).
La imagen de luz visible más profunda del cosmos, el Campo Ultra Profundo del Hubble.
El universo es la totalidad del espacio y del tiempo, de todas las formas de la materia, la energía y el impulso, las leyes y constantes físicas que las gobiernan. Sin embargo, el término universo puede ser utilizado en sentidos contextuales ligeramente diferentes, para referirse a conceptos como el cosmos, el mundo o la naturaleza.
Observaciones astronómicas indican que el Universo tiene una edad de 13,73 ± 0,12 mil millones de años y por lo menos 93.000 millones de años luz de extensión.[1] El evento que se cree que dio inicio al Universo se denomina Big Bang. En aquel instante toda la materia y la energía del universo observable estaba concentrada en un punto de densidad infinita. Después del Big Bang, el universo comenzó a expandirse para llegar a su condición actual, y lo continúa haciendo.
Debido a que, según teoría de la relatividad especial, la materia no puede moverse a una velocidad superior a la velocidad de la luz, puede parecer paradójico que dos objetos del universo puedan haberse separado 93 mil millones de años luz en un tiempo de únicamente 13 mil millones de años; sin embargo, esta separación no entra en conflicto con la teoría de la relatividad general, ya que ésta sólo afecta al movimiento en el espacio, pero no al espacio mismo, que puede extenderse a un ritmo superior, no limitado por la velocidad de la luz. Por lo tanto, dos galaxias pueden separarse una de la otra más rápidamente que la velocidad de la luz si es el espacio entre ellas el que se dilata.
Mediciones sobre la distribución espacial y el desplazamiento hacia el rojo (redshift) de galaxias distantes, la radiación cósmica de fondo de microondas, y los porcentajes relativos de los elementos químicos más ligeros, apoyan la teoría de la expansión del espacio, y más en general, la teoría del Big Bang, que propone que el universo en sí se creó en un momento específico en el pasado.
Observaciones recientes han demostrado que esta expansión se está acelerando, y que la mayor parte de la materia y la energía en el universo es fundamentalmente diferente de la observada en la Tierra, y no es directamente observable[2] (véanse materia oscura y energía oscura). La imprecisión de las observaciones actuales ha limitado las predicciones sobre el destino final del Universo.
Los experimentos sugieren que el universo se ha regido por las mismas leyes físicas, constantes a lo largo de su extensión e historia. La fuerza dominante en distancias cósmicas es la gravedad, y la relatividad general es actualmente la teoría más exacta para describirla. Las otras tres fuerzas fundamentales, y las partículas en las que actúan, son descritas por el Modelo Estándar. El universo tiene por lo menos tres dimensiones de espacio y una de tiempo, aunque experimentalmente no se pueden descartar dimensiones adicionales muy pequeñas. El espacio-tiempo parece estar conectado de forma sencilla, y el espacio tiene una curvatura media muy pequeña o incluso nula, de manera que la geometría euclidiana es, como norma general, exacta en todo el universo.
La ciencia modeliza el universo como un sistema cerrado que contiene energía y materia adscritas al espacio-tiempo y que se rige fundamentalmente por principios causales.
Basándose en observaciones del universo observable, los físicos intentan describir el continuo espacio-tiempo en que nos encontramos, junto con toda la materia y energía existentes en él. Su estudio, en las mayores escalas, es el objeto de la cosmología, disciplina basada en la astronomía y la física, en la cual se describen todos los aspectos de este universo con sus fenómenos.
La teoría actualmente más aceptada sobre la formación del Universo, dada por el belga valón Lemaître, es el modelo del Big Bang, que describe la expansión del espacio-tiempo a partir de una singularidad espaciotemporal. El Universo experimentó un rápido periodo de inflación cósmica que arrasó con todas las irregularidades iniciales. A partir de entonces el Universo se expandió y se convirtió en estable, más frío y menos denso. Las variaciones menores en la distribución de la masa dieron como resultado la segregación fractal en porciones, que se encuentran en el universo actual como cúmulos de galaxias.
En cuanto a su destino final, las pruebas actuales parecen apoyar las teorías de la expansión permanente del universo (Big Freeze ó Big Rip), aunque otras afirman que la materia oscura podría ejercer la fuerza de gravedad suficiente para detener la expansión y hacer que toda la materia se comprima nuevamente; algo a lo que los científicos denominan el Big Crunch o la Gran Implosión.

Contenido

[ocultar]

Porción observable

Artículo principal: Universo observable
Los cosmólogos teóricos y astrofísicos utilizan de manera diferente el término universo, designando bien el sistema completo o únicamente una parte de él.[3] Según el convenio de los cosmólogos, el término Universo (con U mayúscula) se refiere frecuentemente a la parte finita del espacio-tiempo que es directamente observable utilizando telescopios, otros detectores, y métodos físicos, teóricos y empíricos para estudiar los componentes básicos del Universo y sus interacciones. Los físicos cosmólogos asumen que la parte observable del espacio comóvil (también llamado nuestro Universo) corresponde a una parte de un modelo del espacio entero y normalmente no es el espacio entero. Frecuentemente se utiliza el término el Universo como ambas: la parte observable del espacio-tiempo, o el espacio-tiempo entero.
Algunos cosmólogos creen que el Universo observable es una parte extremadamente pequeña del Universo «entero» realmente existente, y que es imposible observar todo el espacio comóvil. En la actualidad se desconoce si esto es correcto, ya que de acuerdo a los estudios de la forma del Universo, es posible que el Universo observable esté cerca de tener el mismo tamaño que todo el espacio. La pregunta sigue debatiéndose.[4] [5] Si una versión del escenario de la inflación cósmica es correcta, entonces aparentemente no habría manera de determinar si el Universo es finito o infinito. En el caso del Universo observable, éste puede ser solo una mínima porción del Universo existente, y por consiguiente puede ser imposible saber realmente si el Universo está siendo completamente observado.

Evolución

Teoría sobre el origen y la formación del Universo (Big Bang)

Artículo principal: Teoría del Big Bang
El hecho de que el Universo esté en expansión se deriva de las observaciones del corrimiento al rojo realizadas en la década de 1920 y que se cuantifican por la ley de Hubble. Dichas observaciones son la predicción experimental del modelo de Friedmann-Robertson-Walker, que es una solución de las ecuaciones de campo de Einstein de la relatividad general, que predicen el inicio del universo mediante un big bang.
El "corrimiento al rojo" es un fenómeno observado por los astrónomos, que muestra una relación directa entre la distancia de un objeto remoto (como una galaxia) y la velocidad con la que éste se aleja. Si esta expansión ha sido continua a lo largo de la vida del Universo, entonces en el pasado estos objetos distantes que siguen alejándose tuvieron que estar una vez juntos. Esta idea da pie a la teoría del Big Bang; el modelo dominante en la cosmología actual.
Durante la era más temprana del Big Bang, se cree que el Universo era un caliente y denso plasma. Según avanzó la expansión, la temperatura decreció hasta el punto en que se pudieron formar los átomos. En aquella época, la energía de fondo se desacopló de la materia y fue libre de viajar a través del espacio. La energía remanente continuó enfriándose al expandirse el Universo y hoy forma el fondo cósmico de microondas. Esta radiación de fondo es remarcablemente uniforme en todas direcciones, circunstancia que los cosmólogos han intentado explicar como reflejo de un periodo temprano de inflación cósmica después del Big Bang.
El examen de las pequeñas variaciones en el fondo de radiación de microondas proporciona información sobre la naturaleza del Universo, incluyendo la edad y composición. La edad del universo desde el Big Bang, de acuerdo a la información actual proporcionada por el WMAP de la NASA, se estima en unos 13.700 millones de años, con un margen de error de un 1% (137 millones de años). Otros métodos de estimación ofrecen diferentes rangos de edad, desde 11.000 millones a 20.000 millones.

Sopa Primigenia

Hasta hace poco, la primera centésima de segundo era más bien un misterio, impidiendo los científicos describir exactamente cómo era el Universo. Los nuevos experimentos en el RHIC, en el Brookhaven National Laboratory, han proporcionado a los físicos una luz en esta cortina de alta energía, de tal manera que pueden observar directamente los tipos de comportamiento que pueden haber tomado lugar en ese instante.[6]
En estas energías, los quarks que componen los protones y los neutrones no estaban juntos, y una mezcla densa supercaliente de quarks y gluones, con algunos electrones, era todo lo que podía existir en los microsegundos anteriores a que se enfriaran lo suficiente para formar el tipo de partículas de materia que observamos hoy en día.[7]

Protogalaxias

Artículo principal: Protogalaxia
Los rápidos avances acerca de lo que pasó después de la existencia de la materia aportan mucha información sobre la formación de las galaxias. Se cree que las primeras galaxias eran débiles "galaxias enanas" que emitían tanta radiación que separarían los átomos gaseosos de sus electrones. Este gas, a su vez, se estaba calentando y expandiendo, y tenía la posibilidad de obtener la masa necesaria para formar las grandes galaxias que conocemos hoy.[8] [9]

Destino Final

Artículo principal: Destino último del Universo
El destino final del Universo tiene diversos modelos que explican lo que sucederá en función de diversos parámetros y observaciones. A continuación se explican los modelos fundamentales más aceptados:

Big Crunch o la Gran Implosión

Artículo principal: Big Crunch
Es muy posible que el inmenso aro que rodeaba a las galaxias sea una forma de materia que resulta invisible desde la Tierra. Esta materia oscura tal vez constituya el 99% de todo lo que hay en el Universo.[cita requerida]
Si el universo es suficientemente denso, es posible que la fuerza gravitatoria de toda esa materia pueda finalmente detener la expansión inicial, de tal manera que el universo volvería a contraerse, las galaxias empezarían a retroceder, y con el tiempo colisionarían entre sí. La temperatura se elevaría, y el Universo se precipitaría hacia un destino catastrófico en el que quedaría reducido nuevamente a un punto.
Algunos físicos han especulado que después se formaría otro Universo, en cuyo caso se repetiría el proceso. A esta teoría se la conoce como la teoría del Universo oscilante.
Hoy en día esta hipótesis parece incorrecta, pues a la luz de los últimos datos experimentales, el Universo se está expandiendo cada vez más rápido.

Big Rip o Gran Desgarramiento

Artículo principal: Big Rip
El Gran Desgarramiento o Teoría de la Eterna Expansión, llamado en inglés Big Rip, es una hipótesis cosmológica sobre el destino último del universo. Este posible destino final del universo depende de la cantidad de energía oscura existente en el Universo. Si el Universo contiene suficiente energía oscura, podría acabar en un desgarramiento de toda la materia.
El valor clave es w, la razón entre la presión de la energía oscura y su densidad energética. A w < -1, el universo acabaría por ser desgarrado. Primero, las galaxias se separarían entre sí, luego la gravedad sería demasiado débil para mantener integrada cada galaxia. Los sistemas planetarios perderían su cohesión gravitatoria. En los últimos minutos, se desbaratarán estrellas y planetas, y los átomos serán destruidos.
Los autores de esta hipótesis calculan que el fin del tiempo ocurriría aproximadamente 3,5×1010 años después del Big Bang, es decir, dentro de 2,0×1010 años.
Una modificación de esta teoría denominada Big Freeze, aunque poco aceptada,[cita requerida] afirma que el universo continuaría su expansión sin provocar un Big Rip.

Descripción física

Tamaño

Artículo principal: Universo observable
Muy poco se conoce con certeza sobre el tamaño del Universo. Puede tener una longitud de billones de años luz o incluso tener un tamaño infinito. Un artículo de 2003[10] dice establecer una cota inferior de 24 gigaparsecs (78.000 millones de años luz) para el tamaño del Universo, pero no hay ninguna razón para creer que esta cota está de alguna manera muy ajustada (Véase forma del Universo). pero hay distintas tesis del tamaño; una de ellas es que hay varios universos, otro es que el universo es infinito
El Universo observable (o visible), que consiste en toda la materia y energía que podía habernos afectado desde el Big Bang dada la limitación de la velocidad de la luz, es ciertamente finito. La distancia comóvil al extremo del Universo visible ronda los 46.500 millones de años luz en todas las direcciones desde la Tierra. Así, el Universo visible se puede considerar como una esfera perfecta con la Tierra en el centro, y un diámetro de unos 93.000 millones de años luz.[11] Hay que notar que muchas fuentes han publicado una amplia variedad de cifras incorrectas para el tamaño del Universo visible: desde 13.700 hasta 180.000 millones de años luz. (Véase Universo observable).
En el Universo las distancias que separan los astros son tan grandes que, si las quisiéramos expresar en metros, tendríamos que utilizar cifras muy grandes. Debido a ello, se utiliza como unidad de longitud el año luz, que corresponde a la distancia que recorre la luz en un año.
Actualmente, el modelo de universo más comúnmente aceptado es el propuesto por Albert Einstein en su Relatividad General, en la que propone un universo "finito pero ilimitado", es decir, que a pesar de tener un volumen medible no tiene límites, de forma análoga a la superficie de una esfera, que es medible pero ilimitada.

Forma

Universum, Grabado Flammarion ,xilografía, publicada en París 1888.
Una pregunta importante abierta en cosmología es la forma del Universo. Matemáticamente, ¿qué 3-variedad representa mejor la parte espacial del Universo?
Si el Universo es espacialmente plano, se desconoce si las reglas de la geometría Euclidiana serán válidas a mayor escala. Actualmente muchos cosmólogos creen que el Universo observable está muy cerca de ser espacialmente plano, con arrugas locales donde los objetos masivos distorsionan el espacio-tiempo, de la misma forma que la superficie de un lago es casi plana. Esta opinión fue reforzada por los últimos datos del WMAP, mirando hacia las "oscilaciones acústicas" de las variaciones de temperatura en la radiación de fondo de microondas.[12]
Por otra parte, se desconoce si el Universo es múltiplemente conexo. El Universo no tiene cotas espaciales de acuerdo al modelo estándar del Big Bang, pero sin embargo debe ser espacialmente finito (compacto). Esto se puede comprender utilizando una analogía en dos dimensiones: la superficie de una esfera no tiene límite, pero no tiene un área infinita. Es una superficie de dos dimensiones con curvatura constante en una tercera dimensión. La 3-esfera es un equivalente en tres dimensiones en el que las tres dimensiones están constantemente curvadas en una cuarta.
Si el Universo fuese compacto y sin cotas, sería posible, después de viajar una distancia suficiente, volver al punto de partida. Así, la luz de las estrellas y galaxias podría pasar a través del Universo observable más de una vez. Si el Universo fuese múltiplemente conexo y suficientemente pequeño (y de un tamaño apropiado, tal vez complejo) entonces posiblemente se podría ver una o varias veces alrededor de él en alguna (o todas) direcciones. Aunque esta posibilidad no ha sido descartada, los resultados de las últimas investigaciones de la radiación de fondo de microondas hacen que esto parezca improbable.

Color

Café cortado cósmico, el color del Universo.
Históricamente se ha creído que el Universo es de color negro, pues es lo que observamos al momento de mirar al cielo en las noches despejadas. En 2002, sin embargo, los astrónomos Karl Glazebrook e Ivan Baldry afirmaron en un artículo científico que el Universo en realidad es de un color que decidieron llamar café cortado cósmico.[13] [14] Este estudio se basó en la medición del rango espectral de la luz proveniente de un gran volúmen del Universo, sintetizando la información aportada por un total de más de 200.000 galaxias.

Homogeneidad e isotropía

Fluctuaciones en la radiación de fondo de microondas, Imagen NASA/WMAP.
Mientras que la estructura está considerablemente fractalizada a nivel local (ordenada en una jerarquía de racimo), en los órdenes más altos de distancia el Universo es muy homogéneo. A estas escalas la densidad del Universo es muy uniforme, y no hay una dirección preferida o significativamente asimétrica en el Universo. Esta homogeneidad e isotropía es un requisito de la Métrica de Friedman-Lemaître-Robertson-Walker empleada en los modelos cosmológicos modernos.[15]
La cuestión de la anisotropía en el Universo primigenio fue significativamente contestada por el WMAP, que buscó fluctuaciones en la intensidad del fondo de microondas.[16] Las medidas de esta anisotropía han proporcionado información útil y restricciones sobre la evolución del Universo.
Hasta el límite de la potencia de observación de los instrumentos astronómicos, los objetos radian y absorben la energía de acuerdo a las mismas leyes físicas a como lo hacen en nuestra propia galaxia.[17] Basándose en esto, se cree que las mismas leyes y constantes físicas son universalmente aplicables a través de todo el Universo observable. No se ha encontrado ninguna prueba confirmada que muestre que las constantes físicas hayan variado desde el Big Bang.[18]

Composición

El Universo observable actual parece tener un espacio-tiempo geométricamente plano, conteniendo una densidad masa-energía equivalente a 9,9 × 10-30 gramos por centímetro cúbico. Los constituyentes primarios parecen consistir en un 73% de energía oscura, 23% de materia oscura fría y un 4% de átomos. Así, la densidad de los átomos equivaldría a un núcleo de hidrógeno sencillo por cada cuatro metros cúbicos de volumen.[19] La naturaleza exacta de la energía oscura y la materia oscura fría sigue siendo un misterio. Actualmente se especula con que el neutrino, (una partícula muy abundante en el universo), tenga, aunque mínima, una masa. De comprobarse este hecho, podría significar que la energía y la materia oscura no existen.
Durante las primeras fases del Big Bang, se cree que se formaron las mismas cantidades de materia y antimateria. Materia y antimateria deberían eliminarse mutuamente al entrar en contacto, por lo que la actual existencia de materia (y la ausencia de antimateria) supone una violación de la simetría CP (Véase Violación CP), por lo que puede ser que las partículas y las antipartículas no tengan propiedades exactamente iguales o simétricas,[20] o puede que simplemente las leyes físicas que rigen el universo favorezcan la supervivencia de la materia frente a la antimateria.[21] En este mismo sentido, también se ha sugerido que quizás la materia oscura sea la causante de la bariogénesis al interactuar de distinta forma con la materia que con la antimateria.[22]
Antes de la formación de las primeras estrellas, la composición química del Universo consistía primariamente en hidrógeno (75% de la masa total), con una suma menor de helio-4 (4He) (24% de la masa total) y el resto de otros elementos.[23] Una pequeña porción de estos elementos estaba en la forma del isótopo deuterio (2H), helio-3 (3He) y litio (7Li).[24] La materia interestelar de las galaxias ha sido enriquecida sin cesar por elementos más pesados, generados por procesos de fusión en la estrellas, y diseminados como resultado de las explosiones de supernovas, los vientos estelares y la expulsión de la cubierta exterior de estrellas maduras.[25]
El Big Bang dejó detrás un flujo de fondo de fotones y neutrinos. La temperatura de la radiación de fondo ha decrecido sin cesar con la expansión del Universo y ahora fundamentalmente consiste en la energía de microondas equivalente a una temperatura de 2'725 K.[26] La densidad del fondo de neutrinos actual es sobre 150 por centímetro cúbico.[27]

Multiversos

Artículos principales: Multiverso y Universos paralelos
Los cosmólogos teóricos estudian modelos del conjunto espacio-tiempo que estén conectados, y buscan modelos que sean consistentes con los modelos físicos cosmológicos del espacio-tiempo en la escala del universo observable. Sin embargo, recientemente han tomado fuerza teorías que contemplan la posibilidad de multiversos o varios universos coexistiendo simultáneamente. Según la recientemente enunciada Teoría de Multiexplosiones se pretende dar explicación a este aspecto, poniendo en relieve una posible convivencia de universos en un mismo espacio.[28]

Estructuras agregadas del universo

Las galaxias

Artículo principal: Galaxia
A gran escala, el universo está formado por galaxias y agrupaciones de galaxias. Las galaxias son agrupaciones masivas de estrellas, y son las estructuras más grandes en las que se organiza la materia en el Universo. A través del telescopio se manifiestan como manchas luminosas de diferentes formas. A la hora de clasificarlas, los científicos distinguen entre las galaxias del Grupo Local, compuesto por las treinta galaxias más cercanas y a las que está unida gravitacionalmente nuestra galaxia (la Vía Láctea), y todas las demás galaxias, a las que llaman "galaxias exteriores".
Las galaxias están distribuidas por todo el Universo y presentan características muy diversas, tanto en lo que respecta a su configuración como a su antigüedad. Las más pequeñas abarcan alrededor de 3.000 millones de estrellas, y las galaxias de mayor tamaño pueden llegar a abarcar más de un billón de astros. Estas últimas pueden tener un diámetro de 170.000 años luz, mientras que las primeras no suelen exceder de los 6.000 años luz.
Además de estrellas y sus astros asociados (planetas, asteroides, etc...), las galaxias contienen también materia interestelar, constituida por polvo y gas en una proporción que varia entre el 1 y el 10% de su masa.
Se estima que el universo puede estar constituido por unos 100.000 millones de galaxias, aunque estas cifras varían en función de los diferentes estudios.

Formas de galaxias

La creciente potencia de los telescopios, que permite observaciones cada vez más detalladas de los distintos elementos del Universo, ha hecho posible una clasificación de las galaxias por su forma. Se han establecido así cuatro tipos distintos: galaxias elípticas, espirales, espirales barradas e irregulares.
Galaxia elíptica NGC 1316

Galaxias elípticas

En forma de elipse o de esferoide, se caracterizan por carecer de una estructura interna definida y por presentar muy poca materia interestelar. Se consideran las más antiguas del Universo, ya que sus estrellas son viejas y se encuentran en una fase muy avanzada de su evolución.

Galaxias espirales

Están constituidas por un núcleo central y dos o más brazos en espiral, que parten del núcleo. Éste se halla formado por multitud de estrellas y apenas tiene materia interestelar, mientras que en los brazos abunda la materia interestelar y hay gran cantidad de estrellas jóvenes, que son muy brillantes. Alrededor del 75% de las galaxias del Universo son de este tipo.

Galaxia espiral barrada

Es un subtipo de galaxia espiral, caracterizados por la presencia de una barra central de la que típicamente parten dos brazos espirales. Este tipo de galaxias constituyen una fracción importante del total de galaxias espirales. La Vía Láctea es una galaxia espiral barrada.
Galaxia irregular NGC 1427

Galaxias irregulares

Incluyen una gran diversidad de galaxias, cuyas configuraciones no responden a las tres formas anteriores, aunque tienen en común algunas características, como la de ser casi todas pequeñas y contener un gran porcentaje de materia interestelar. Se calcula que son irregulares alrededor del 5% de las galaxias del Universo.

La Vía Láctea

Artículo principal: Vía Láctea
La Vía Láctea es nuestra galaxia. Según las observaciones, posee una masa de 1012 masas solares y es de tipo espiral barrada. Con un diámetro medio de unos 100.000 años luz se calcula que contiene unos 200.000 millones de estrellas, entre las cuales se encuentra el Sol. La distancia desde el Sol al centro de la galaxia es de alrededor de 27.700 años luz (8,5 kpc) A simple vista, se observa como una estela blanquecina de forma elíptica, que se puede distinguir en las noches despejadas. Lo que no se aprecian son sus brazos espirales, en uno de los cuales, el llamado brazo de Orión, está situado nuestro sistema solar, y por tanto la Tierra.
El núcleo central de la galaxia presenta un espesor uniforme en todos sus puntos, salvo en el centro, donde existe un gran abultamiento con un grosor máximo de 16.000 años luz, siendo el grosor medio de unos 6.000 años luz.
Todas las estrellas y la materia interestelar que contiene la Vía Láctea, tanto en el núcleo central como en los brazos, están situadas dentro de un disco de 100.000 años luz de diámetro, que gira lentamente sobre su eje a una velocidad lineal superior a los 216 km/s.

Las constelaciones

Artículo principal: Constelación
Tan sólo 3 galaxias distintas a la nuestra son visibles a simple vista. Tenemos la Galaxia de Andrómeda, visible desde el Hemisferio Norte; la Gran Nube de Magallanes, y la Pequeña Nube de Magallanes, en el Hemisferio Sur celeste. El resto de las galaxias no son visibles al ojo desnudo sin ayuda de instrumentos. Sí que lo son, en cambio, las estrellas que forman parte de la Vía Láctea. Estas estrellas dibujan a menudo en el cielo figuras reconocibles, que han recibido diversos nombres en relación con su aspecto. Estos grupos de estrellas de perfil identificable se conocen con el nombre de constelaciones. La Unión Astronómica Internacional agrupó oficialmente las estrellas visibles en 88 constelaciones, algunas de ellas muy extensas, como Hidra o la Osa Mayor, y otras muy pequeñas como Flecha y Triángulo.

Las estrellas

Artículo principal: Estrella
Son los elementos constitutivos más destacados de las galaxias. Las estrellas son enormes esferas de gas que brillan debido a sus gigantescas reacciones nucleares. Cuando debido a la fuerza gravitatoria, la presión y la temperatura del interior de una estrella es suficientemente intensa, se inicia la fusión nuclear de sus átomos, y comienzan a emitir una luz roja oscura, que después se mueve hacia el estado superior, que es en el que está nuestro Sol, para posteriormente, al modificarse las reacciones nucleares interiores, dilatarse y finalmente enfriarse.
Al acabarse el hidrógeno, se originan reacciones nucleares de elementos más pesados, más energéticas, que convierten la estrella en una gigante roja. Con el tiempo, ésta vuelve inestable, a la vez que lanza hacia el espacio exterior la mayor parte del material estelar. Este proceso puede durar 100 millones de años, hasta que se agota toda la energía nuclear, y la estrella se contrae por efecto de la gravedad hasta hacerse pequeña y densa, en la forma de enana blanca, azul o marrón. Si la estrella inicial es varias veces más masiva que el Sol, su ciclo puede ser diferente, y en lugar de una gigante, puede convertirse en una supergigante y acabar su vida con una explosión denominada supernova. Estas estrellas pueden acabar como estrellas de neutrones. Tamaños aún mayores de estrellas pueden consumir todo su combustible muy rápidamente, transformándose en una entidad supermasiva llamada agujero negro.
Los Púlsares son fuentes de ondas de radio que emiten con periodos regulares. La palabra Púlsar significa pulsating radio source (fuente de radio pulsante). Se detectan mediante radiotelescopios y se requieren relojes de extraordinaria precisión para detectar sus cambios de ritmo. Los estudios indican que un púlsar es una estrella de neutrones pequeña que gira a gran velocidad. El más conocido está en la Nebulosa del Cangrejo. Su densidad es tan grande que una muestra de cuásar del tamaño de una bola de bolígrafo tendría una masa de cerca de 100.000 toneladas. Su campo magnético, muy intenso, se concentra en un espacio reducido. Esto lo acelera y lo hace emitir gran cantidad de energía en haces de radiación que aquí recibimos como ondas de radio.
La palabra Cuásar es un acrónimo de quasi stellar radio source (fuentes de radio casi estelares). Se identificaron en la década de 1950. Más tarde se vio que mostraban un desplazamiento al rojo más grande que cualquier otro objeto conocido. La causa era el Efecto Doppler, que mueve el espectro hacia el rojo cuando los objetos se alejan. El primer Cuásar estudiado, denominado 3C 273, está a 1.500 millones de años luz de la Tierra. A partir de 1980 se han identificado miles de cuásares, algunos alejándose de nosotros a velocidades del 90% de la de la luz.
Se han descubierto cuásares a 12.000 millones de años luz de la Tierra; prácticamente la edad del Universo. A pesar de las enormes distancias, la energía que llega en algunos casos es muy grande, equivalente la recibida desde miles de galaxias: como ejemplo, el s50014+81 es unas 60.000 veces más brillante que toda la Vía Láctea.

Los planetas

Artículo principal: Planeta
Los planetas son cuerpos que giran en torno a una estrella y que, según la definición de la Unión Astronómica Internacional, deben cumplir además la condición de haber limpiado su órbita de otros cuerpos rocosos importantes, y de tener suficiente masa como para que su fuerza de gravedad genere un cuerpo esférico. En el caso de cuerpos que orbitan alrededor de una estrella que no cumplan estas características, se habla de planetas enanos, planetesimales, o asteroides. En nuestro Sistema Solar hay 8 planetas: Mercurio, Venus, Tierra, Marte, Júpiter, Saturno, Urano y Neptuno, considerándose desde 2006 a Plutón como un planeta enano. A finales de 2009, fuera de nuestro Sistema Solar se han detectado en torno a 400 planetas extrasolares, pero los avances tecnológicos están permitiendo que este número crezca a buen ritmo.

Los satélites

Artículo principal: Satélite natural
Los satélites naturales son astros que giran alrededor de los planetas. El único satélite natural de la Tierra es la Luna, que es también el satélite más cercano al sol. A continuación se enumeran los principales satélites de los planetas del sistema solar (se incluye en el listado a Plutón, considerado por la UAI como un planeta enano).

Asteroides y cometas

Artículos principales: Asteroide y Cometa
En aquellas zonas de la órbita de una estrella en las que, por diversos motivos, no se ha producido la agrupación de la materia inicial en un único cuerpo dominante o planeta, aparecen los discos de asteroides: objetos rocosos de muy diversos tamaños que orbitan en grandes cantidades en torno a la estrella, chocando eventualmente entre sí. Cuando las rocas tienen diámetros inferiores a 50m se denominan meteoroides. A consecuencia de las colisiones, algunos asteroides pueden variar sus órbitas, adoptando trayectorias muy excéntricas que periódicamente les acercan la estrella. Cuando la composición de estas rocas es rica en agua u otros elementos volátiles, el acercamiento a la estrella y su consecuente aumento de temperatura origina que parte de su masa se evapore y sea arrastrada por el viento solar, creando una larga cola de material brillante a medida que la roca se acerca a la estrella. Estos objetos se denominan cometas. En nuestro sistema solar hay dos grandes discos de asteroides: uno situado entre las órbitas de Marte y Júpiter, denominado el Cinturón de asteroides, y otro mucho más tenue y disperso en los límites del sistema solar, a aproximadamente un año luz de distancia, denominado Nube de Oort.

Indicios de un comienzo

La teoría general de la relatividad, que publicó Albert Einstein en 1916, implicaba que el cosmos se hallaba en expansión o en contracción. Pero este concepto era totalmente opuesto a la noción de un universo estático, aceptada entonces hasta por el propio Einstein. De ahí que éste incluyera en sus cálculos lo que denominó “constante cosmológica”, ajuste mediante el cual intentaba conciliar su teoría con la idea aceptada de un universo estático e inmutable. Sin embargo, ciertos descubrimientos que se sucedieron en los años veinte llevaron a Einstein a decir que el ajuste que había efectuado a su teoría de la relatividad era el ‘mayor error de su vida’. Dichos descubrimientos se realizaron gracias a la instalación de un enorme telescopio de 254 centímetros en el monte Wilson (California). Las observaciones formuladas en los años veinte con la ayuda de este instrumento demostraron que el universo se halla en expansión.
Hasta entonces, los mayores telescopios solo permitían identificar las estrellas de nuestra galaxia, la Vía Láctea, y aunque se veían borrones luminosos, llamados nebulosas, por lo general se tomaban por remolinos de gas existentes en nuestra galaxia. Gracias a la mayor potencia del telescopio del monte Wilson, Edwin Hubble logró distinguir estrellas en aquellas nebulosas. Finalmente se descubrió que los borrones eran lo mismo que la Vía Láctea: galaxias. Hoy se cree que hay entre 50.000 y 125.000 millones de galaxias, cada una con cientos de miles de millones de estrellas.
A finales de los años veinte, Hubble también descubrió que las galaxias se alejan de nosotros, y que lo hacen más velozmente cuanto más lejos se hallan. Los astrónomos calculan la tasa de recesión de las galaxias mediante el espectrógrafo, instrumento que mide el espectro de la luz procedente de los astros. Para ello, dirigen la luz que proviene de estrellas lejanas hacia un prisma, que la descompone en los colores que la integran.
La luz de un objeto es rojiza (fenómeno llamado corrimiento al rojo) si este se aleja del observador, y azulada (corrimiento al azul) si se le aproxima. Cabe destacar que, salvo en el caso de algunas galaxias cercanas, todas las galaxias conocidas tienen líneas espectrales desplazadas hacia el rojo. De ahí infieren los científicos que el universo se expande de forma ordenada. La tasa de dicha expansión se determina midiendo el grado de desplazamiento al rojo. ¿Qué conclusión se ha extraído de la expansión del cosmos? Pues bien, un científico invitó al público a analizar el proceso a la inversa —como una película de la expansión proyectada en retroceso— a fin de observar la historia primitiva del universo. Visto así, el cosmos parecería estar en recesión o contracción, en vez de en expansión y retornaría finalmente a un único punto de origen.
El famoso físico Stephen Hawking concluyó lo siguiente en su libro Agujeros negros y pequeños universos (y otros ensayos), editado en 1993: “La ciencia podría afirmar que el universo tenía que haber conocido un comienzo”. Pero hace años, muchos expertos rechazaban que el universo hubiese tenido principio. El famoso científico Fred Hoyle no aceptaba que el cosmos hubiera surgido mediante lo que llamó burlonamente ‘a big bang’ (una gran explosión). Uno de los argumentos que esgrimía era que, de haber existido un comienzo tan dinámico, deberían conservarse residuos de aquel acontecimiento en algún lugar del universo: tendría que haber radiación fósil, por así decirlo; una leve luminiscencia residual.
El diario The New York Times (8 de marzo de 1998) indicó que hacia 1965 “los astrónomos Arno Penzias y Robert Wilson descubrieron la omnipresente radiación de fondo: el destello residual de la explosión primigenia”. El artículo añadió: “Todo indicaba que la teoría [de la gran explosión] había triunfado”.
Pero en los años posteriores al hallazgo se formuló esta objeción: Si el modelo de la gran explosión era correcto, ¿por qué no se habían detectado leves irregularidades en la radiación? (La formación de las galaxias habría requerido un universo que contase con zonas más frías y densas que permitieran la fusión de la materia.) En efecto, los experimentos realizados por Penzias y Wilson desde la superficie terrestre no revelaban tales irregularidades.
Por esta razón, la NASA lanzó en noviembre de 1989 el satélite COBE (siglas de Explorador del Fondo Cósmico, en inglés), cuyos descubrimientos se calificaron de cruciales. “Las ondas que detectó su radiómetro diferencial de microondas correspondían a las fluctuaciones que dejaron su impronta en el cosmos y que hace miles de millones de años llevaron a la formación de las galaxias.”

Otros términos

Diferentes palabras se han utilizado a través de la historia para denotar "todo el espacio", incluyendo los equivalentes y las variantes en varios lenguajes de "cielos", "cosmos" y "mundo". El macrocosmos también se ha utilizado para este efecto, aunque está más específicamente definido como un sistema que refleja a gran escala uno, algunos, o todos estos componentes del sistema o partes. Similarmente, un microcosmos es un sistema que refleja a pequeña escala un sistema mucho mayor del que es parte.
Aunque palabras como mundo y sus equivalentes en otros lenguajes casi siempre se refieren al planeta Tierra, antiguamente se referían a cada cosa que existía (se podía ver). En ese sentido la utilizaba, por ejemplo, Copérnico. Algunos lenguajes utilizan la palabra "mundo" como parte de la palabra "espacio exterior". Un ejemplo en alemán lo constituye la palabra "Weltraum".[29]

Véase también

Referencias

  1. Lineweaver, Charles; Tamara M. Davis (2005). Misconceptions about the Big Bang. Scientific American. Enlace verificado 31 de marzo de 2008.
  2. «Primeras imágenes de la materia oscura». Consultado el 20 de diciembre de 2010.
  3. JSTOR: Un Universo o muchos?
  4. Luminet, Jean-Pierre; Boudewijn F. Roukema (1999). «Topology of the Universe: Theory and Observations». Proceedings de la Escuala de Cosmología de Cargese (Córcega) Agosto de 1998. http://arxiv.org/abs/astro-ph/9901364. Consultado el 05-01-2007. 
  5. Luminet, Jean-Pierre; J. Weeks, A. Riazuelo, R. Lehoucq, J.-P. Uzan (2003). «Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background». Nature 425:  pp. 593. http://arxiv.org/abs/astro-ph/0310253. Consultado el 09-01-2007. 
  6. Brookhaven National Laboratory (ed.): «Heavy Ion Collisions».
  7. Thomas Ludlam, Larry McLerran (Octubre de 2003). Physics Today (ed.): «What Have We Learned From the Relativistic Heavy Ion Collider?». Consultado el 28 de febrero de 2007.
  8. Ken Tan (15 de enero de 2007). space.com (ed.): «New 'Hobbit' Galaxies Discovered Around Milky Way». Consultado el 1 de marzo de 2007.
  9. The Uppsala Astronomical Observatory (ed.): «Dwarf Spheroidal Galaxies». Consultado el 1 de marzo de 2007.
  10. Neil J. Cornish, David N. Spergel, Glenn D. Starkman y Eiichiro Komatsu, Constraining the Topology of the Universe.astro-ph/0310233
  11. Lineweaver, Charles; Tamara M. Davis (2005). Scientific American (ed.): «Misconceptions about the Big Bang» (en inglés). Consultado el 5 de marzo de 2007.
  12. «WMAP produces new results» (en inglés).
  13. Baldry, Ivan K.; Glazebrook, Karl (2002), «The 2dF Galaxy Redshift Survey: Constraints on Cosmic Star Formation History from the Cosmic Spectrum», The Astrophysical Journal (The American Astronomical Society) 569: 582–594, 20 de abril 2002, doi:10.1086/339477, http://www.journals.uchicago.edu/doi/pdf/10.1086/339477 
  14. Associated Press (28 de agosto 2008). «Universe: Beige, not Turquoise». Wired.com. Consultado el 1 de noviembre 2009.
  15. N. Mandolesi; P. Calzolari, S. Cortiglioni, F. Delpino, G. Sironi (1986). «Large-scale homogeneity of the Universe measured by the microwave background». Letters to Nature 319:  pp. 751-753. http://www.nature.com/nature/journal/v319/n6056/abs/319751a0.html. 
  16. Hinshaw, Gary (2006). NASA WMAP (ed.): «New Three Year Results on the Oldest Light in the Universe». Consultado el 07-03-2007.
  17. Strobel, Nick. Astronomy Notes (ed.): «The Composition of Stars». Consultado el 08-03-2007.
  18. «Have physical constants changed with time?». Consultado el 08-03-2007.
  19. Gary Hinshaw (10 de Febrero de 2006). NASA WMAP (ed.): «What is the Universe Made Of?». Consultado el 1 de marzo de 2007.
  20. La Antimateria
  21. Difference in direct charge-parity violation between charged and neutral B meson decays,Nature 452, 332-335 (20 de marzo de 2008)
  22. New Theory of the Universe Marries Two of its Biggest Mysteries (31 de enero de 2007) de Laura Mgrdichian sobre el trabajo de Tom Banks, Sean Echols y Jeff L. Jones, Baryogenesis, dark matter and the pentagon. J. High Energy Phys. JHEP11 (2006) 046 (en inglés)
  23. UCLA (ed.): «Big Bang Nucleosynthesis» (12 de septiembre de 2004). Consultado el 2 de marzo de 2007.
  24. M. Harwit; M. Spaans (2003). «Chemical Composition of the Early Universe». The Astrophysical Journal 589 (1):  pp. 53-57. http://adsabs.harvard.edu/abs/2003ApJ...589...53H. 
  25. C. Kobulnicky; E. D. Skillman (1997). «Chemical Composition of the Early Universe». Bulletin of the American Astronomical Society 29:  pp. 1329. http://adsabs.harvard.edu/abs/1997AAS...191.7603K. 
  26. Gary Hinshaw (15 de diciembre de 2005). NASA WMAP (ed.): «Tests of the Big Bang: The CMB». Consultado el 2 de marzo de 2007.
  27. Belle Dumé (16 de junio de 2005). Institute of Physics Publishing (ed.): «Background neutrinos join the limelight». Consultado el 2 de marzo de 2007.
  28. Sus modelos son especulativos pero utilizan los métodos de la física de la Royal Astronomical Society. 347. 2004. http://arxiv.org/abs/astro-ph/0305292. Consultado el 09-01-2007. 
  29. Albert Einstein (1952). Relativity: The Special and the General Theory (Fifteenth Edition), ISBN 0-517-88441-0.

Enlaces externos

En inglés: